Molecularly imprinted nanoparticles with recognition properties towards diphtheria toxin for ELISA applications
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor & Francis Ltd
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Plastic antibodies can be used for in vitro neutralization of biomacromolecules with different fragments due to their potential in separation, purification, chemical sensor, catalysis and drug production studies. These polymer nanoparticles with binding affinity and selectivity comparable to natural antibodies were prepared using functional monomer synthesis and copolymerization of acrylic monomers via miniemulsion polymerization. As a result, the in vitro cytotoxic effect from diphtheria toxin was reduced by MIPs. In vitro imaging experiments of polymer nanoparticles (plastic antibodies) were performed to examine the interaction of diphtheria toxin with actin filaments, and MIPs inhibited diphtheria toxin damage on actin filaments. The enzyme-linked immunosorbent assay (ELISA) was performed with plastic antibodies labeled with biotin, and it was determined that plastic antibodies could also be used for diagnostic purposes. We report that molecularly imprinted polymers (MIPs), which are biocompatible polymer nanoparticles, can capture and reduce the effect of diphtheria toxic and its fragment A.
Açıklama
Anahtar Kelimeler
Molecularly Imprinted Polymer, Plastic Antibody, Diphtheria Toxin, ELISA, Catalytic Domain, Translocation, Proteins
Kaynak
Journal Of Biomaterials Science-Polymer Edition
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
34
Sayı
6