Kübik bezier eğrileri ile yüz ifadesi tanıma
Yükleniyor...
Dosyalar
Tarih
2012
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Trakya Üniversitesi Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
İnsan bilgisayar etkileşimi konusu popülerliğini giderek arttırmış olan konulardan biridir. Bilgisayarla insan yüz ifadesi ve duygu tanıma da ilginç olduğu kadar zorlu bir problemdir. Bu çalışmada resimlerden yüz ifadesi tanıma işlemi gerçekleştirilmektedir. Çalışmada gülen, üzgün, şaşkın, korkmuş, kızgın, iğrenme ve doğal olmak üzere 7 farklı duygu tanınmaya çalışılmaktadır. Uygulamada yüz yerinin bulunmasında AdaBoost algoritmasını kullanan Viola-Jones yüz detektöründen yararlanılmıştır. Gözlerin ve ağzın bulunmasında Haar Filtreleri kullanılmıştır. Ağız ve gözlerin hatalı tespit edildiği durumlarda, yüzdeki geometrik oranlarından faydalanılmıştır. Duygu tespitinde Kübik Bezier eğrileri kullanılmıştır. Eğitim ve test için FEEDTUM, MUG ve JAFFE yüz ifadesi veritabanlarından yararlanılmıştır. Çalışma için belirlenen yedi farklı duygunun, tanıma başarı oranları üç veri tabanı için %50 ile %97 arasında değişmektedir. Anahtar Kelimeler : Kübik Bezier Eğrileri, Yüz İfadesi Tanıma, Yüz Bulma, Özellik Çıkarımı, Duygu Sınıflandırma
Abstract
Human-computer interaction has steadily increased in popularity. However, the recognition of human emotions and facial expressions by computers is still a daunting task. This study attempts to recognize facial expression from images. The emotions attempted to be recognized are smiling, sad, confused, scared, angry, disgusted, and neutral. In this study, I used the Viola-Jones face detector that makes use of the AdaBoost algorithm to locate the face. In locating the eyes and the mouth, I relied on the Haar Filters. Facial geometric ratios are used in cases of erroneous detection of the eyes and the mouth. In determining the emotion, Cubic Bezier curves are used. This study also benefited from FEEDTUM, MUG and JAFEE facial expression databases for training and testing. For the seven different emotions studied, the success rate ranges from 50% to 97% for the three databases. Keywords : Cubic Bezier Curve, Facial Expression Recognition, Face Detection, Feature Extraction, Emotion Classification
Abstract
Human-computer interaction has steadily increased in popularity. However, the recognition of human emotions and facial expressions by computers is still a daunting task. This study attempts to recognize facial expression from images. The emotions attempted to be recognized are smiling, sad, confused, scared, angry, disgusted, and neutral. In this study, I used the Viola-Jones face detector that makes use of the AdaBoost algorithm to locate the face. In locating the eyes and the mouth, I relied on the Haar Filters. Facial geometric ratios are used in cases of erroneous detection of the eyes and the mouth. In determining the emotion, Cubic Bezier curves are used. This study also benefited from FEEDTUM, MUG and JAFEE facial expression databases for training and testing. For the seven different emotions studied, the success rate ranges from 50% to 97% for the three databases. Keywords : Cubic Bezier Curve, Facial Expression Recognition, Face Detection, Feature Extraction, Emotion Classification
Açıklama
Yüksek Lisans Tezi
Anahtar Kelimeler
Kübik Bezier Eğrileri, Yüz İfadesi Tanıma, Yüz Bulma, Özellik Çıkarımı, Duygu Sınıflandırma, Cubic Bezier Curve, Facial Expression Recognition, Face Detection, Feature Extraction, Emotion Classification