Iva grubu yarıiletken nanotellerin gaz algılayıcısı olarak kullanılabilme özelliklerinin teorik olarak incelenmesi
Yükleniyor...
Dosyalar
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Trakya Üniversitesi Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Malzemeleri atomik ve moleküler düzeyde kontrol edebilme olanağı sağlayan nanobilim ve nanoteknoloji birçok araştırmacının dikkatini çekmekte ve günden güne bu alanda yeni bilimsel veriler literatüre kazandırılmaktadır. Nanometre mertebesindeki (10 -9 m) yapılar üzerine çalışan bu teknoloji tıp, elektronik, savunma sanayii ve kozmetiğe kadar geniş bir uygulama alanına sahiptir. Nanotel, nanotüp, nanoşerit, nanonokta, nanoçubuk, nanotabaka, nanogözenek vb. yapılar en yaygın nanoyapılar olup, önemli mekanik, fiziksel, optik ve kimyasal özelliklere sahiptir. Çapları nanometre mertebesinde bir boyutlu yapılar olarak bilinen nanotellerin gelecekte yoğun bir şekilde kullanılması beklenen nanoelektronik cihazların temelini oluşturacağı düşünülmektedir. Nanotel alan etkili transistörler, fotonik-optoelektronik cihazlar ve özellikle kimyasal ve biyolojik sensörler bu cihazlardan bazılarıdır. Nanotel yüzeylerindeki molekül adsorbsiyonunun incelenmesi, nanotellerin molekül algılayıcı (sensör) özelliklerinin anlaşılması için izlenmesi gereken ilk yoldur. Adsorbe edilen moleküle göre, adsorbsiyon enerjileri ve elektronik bant yapıları farklılık gösterebilmektedir. Değişen bu adsorbsiyon enerjisi ve elektronik bant aralığı özellikleri yorumlanarak, ilgili yarıiletken nanotelin algılanmak istenen moleküle karşı duyarlı olup olmadığı hakkında bilgi sahibi olunabileceği düşünülmektedir. Bu çalışmada IVA grubunda bulunan Silisyum ve Germanyum yarıiletkenlerinden oluşturulan, 1.5 nanometre yarıçaplı, [111] yönü boyunca uzanan nanotellerin yüzeylerine bazı gaz moleküllerini adsorbe edebilme özellikleri incelenmiştir. Silisyum nanoteli için CO, NO, NO2 ve CH4 gaz molekülleri ele alınırken, Germanyum nanotelleri için CO molekülü çalışılmıştır. Sonuçlar Silisyum nanotellerinin CO, NO ve NO2 moleküllerini adsorbe edebildiği ve bu gazlara karşı sensör olarak kullanılabileceğini, ancak CH4 molekülünü yakalayamadığını göstermektedir. Diğer taraftan Germanyum nanotelinin CO gaz molekülünü adsorbe edemediği ve bu molekülün, Germanyum gaz sensörü için uygun olmadığı sonucuna varılmıştır. Hesaplamalarda, Yoğunluk Fonksiyonel Teorisini temel alan açık kaynak kodlu Düzlem Dalga Öz Uyum Programı (Plane Wave Self Consistent Field (PWscf- Quantum ESPRESSO)) kod paketi kullanılmıştır.
Nanoscience and nanotechnology, which enables the control of materials at the atomic and molecular level, have attracted the interest of many researchers in recent years, and new scientific studies in this field have been introduced into the literature. This technology, which works on nanometer scale (10 -9 m.) structures, has a wide range of applications from medicine to electronics, from the defense industry to cosmetics. Nano tube, nanowire, nanostrip, nanodot, nanorod, nanolayer, nanopore, etc. structures are the most common nanostructures and have important mechanical, physical, optical, and chemical properties. It is thought that nanowires, known as one-dimensional structures with a diameter of nanometers, will form the basis of nanoelectronic devices that are expected to be widely used. Nanowire field effect transistors, photonic-optoelectronic devices, and especially chemical and biological sensors are some of these devices. Investigating molecular adsorption on nanowire surfaces is the first way to understand the molecular sensing (sensor) properties of nanowires. The adsorption energies and electronic band structures may differ depending on the adsorbed molecule. It is thought that by interpreting these changing adsorption energy and electronic band gap properties, information can be obtained about whether the corresponding semiconductor nanowire is sensitive to the molecule to be detected. This idea allows us to get new ideas for the design of the next generation of nano-sensors. In this study, the adsorption properties of some gas molecules on the surfaces of nanowires with a radius of 1.5 nanometers along the [111] direction formed from Silicon and Germanium semiconductors in the IVA group were investigated. For Silicon nanowires, CO, NO, NO2 and CH4 gas molecules were considered, while for Germanium nanowires CO molecule was studied. The results show that Silicon nanowires can adsorb CO, NO and NO2 molecules and can be used as sensors against these gases, but cannot adsorb CH4 molecule. On the other hand, it was concluded that the Germanium nanowire could not adsorb the CO gas molecule and this molecule was not suitable for the Germanium gas sensor. In the calculations, the open source Plane Wave Self Consistent Field (PWscf- Quantum ESPRESSO) code package based on Density Functional Theory was used.
Nanoscience and nanotechnology, which enables the control of materials at the atomic and molecular level, have attracted the interest of many researchers in recent years, and new scientific studies in this field have been introduced into the literature. This technology, which works on nanometer scale (10 -9 m.) structures, has a wide range of applications from medicine to electronics, from the defense industry to cosmetics. Nano tube, nanowire, nanostrip, nanodot, nanorod, nanolayer, nanopore, etc. structures are the most common nanostructures and have important mechanical, physical, optical, and chemical properties. It is thought that nanowires, known as one-dimensional structures with a diameter of nanometers, will form the basis of nanoelectronic devices that are expected to be widely used. Nanowire field effect transistors, photonic-optoelectronic devices, and especially chemical and biological sensors are some of these devices. Investigating molecular adsorption on nanowire surfaces is the first way to understand the molecular sensing (sensor) properties of nanowires. The adsorption energies and electronic band structures may differ depending on the adsorbed molecule. It is thought that by interpreting these changing adsorption energy and electronic band gap properties, information can be obtained about whether the corresponding semiconductor nanowire is sensitive to the molecule to be detected. This idea allows us to get new ideas for the design of the next generation of nano-sensors. In this study, the adsorption properties of some gas molecules on the surfaces of nanowires with a radius of 1.5 nanometers along the [111] direction formed from Silicon and Germanium semiconductors in the IVA group were investigated. For Silicon nanowires, CO, NO, NO2 and CH4 gas molecules were considered, while for Germanium nanowires CO molecule was studied. The results show that Silicon nanowires can adsorb CO, NO and NO2 molecules and can be used as sensors against these gases, but cannot adsorb CH4 molecule. On the other hand, it was concluded that the Germanium nanowire could not adsorb the CO gas molecule and this molecule was not suitable for the Germanium gas sensor. In the calculations, the open source Plane Wave Self Consistent Field (PWscf- Quantum ESPRESSO) code package based on Density Functional Theory was used.
Açıklama
Anahtar Kelimeler
Nanotel, Nano algılayıcı, Gaz adsorbsiyon, Yoğunluk fonksiyonel teorisi (DFT), İlk prensipler metodu, Nanowire, Nanosensor, Gas adsorption, Density functional theory (DFT), First principles method