Karbon zengin nanomalzeme içeren termoplastik kompozitlerin elektriksel, optik ve mekanik özelliklerinin incelenmesi
Yükleniyor...
Dosyalar
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Trakya Üniversitesi, Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Polimer Karbon Dolgu (KD) kompozitler esneklik, hafiflik, işleme kolaylığı ve kimyasal direnç gibi özellikleri nedeniyle yeni bir kompozit ürünü olarak endüstriyel ve akademik camianın ilgisini çekmektedir. Polimer KD kompozitlerin optik, elektrik, mekanik ve termal özelliklerinin belirlenerek ihtiyaca uygun olarak uygun maliyette üretilmesi kullanım alanlarını genişletecektir. Bu çalışma kapsamında, çözelti karıştırma (solution mixing) yöntemi ile elde edilen PMMA/GNP, PMMA/MWCNT, PMMA/CM, PS/GNP, PS/MWCNT, PS/CM, PVA/GNP ve PVA/MWCNT çözeltilerinden sekiz farklı kompozit film serisi hazırlanmış ve elde edilen kompozitlerin elektrik, optik, mekanik özellikleri araştırılmıştır. Kompozitlerin elektriksel ölçümleri iki prob ölçüm tekniği, optik ölçümleri foton geçirme tekniği ve mekanik ölçümleri ise çekme testi ile gerçekleştirilmiştir. Elde edilen optik veriler site perkolasyon, elektriksel veriler klasik perkolasyon, mekanik veriler ise düzenlenmiş klasik perkolasyon (sızma) teorisi ile yorumlanmıştır. Kompozit yapıların hemen hemen hepsinde elektrik, optik ve mekaniksel olarak perkolasyonun gerçekleştiği belirlenmiştir. Kompozitlerin optik bant aralığı enerjileri Tauc metodu kullanılarak ve bu aralıktaki lokalize durumlardan kaynaklanan kusur seviyeleri ise Urbach ilişkisi kullanılarak belirlenmiştir. Elde edilen sonuçlara göre polimer matris içerisindeki KD miktarının artmasıyla kompozitlerin, optik bant aralığı enerjileri azalmış ve elektriksel iletkenlikleri ise artmıştır. Kompozitlerin bant enerjilerinin düşmesi ve elektriksel iletkenliklerinin 10 -4 S’ler mertebesine yükselmesi kompozit yapının yalıtkan-yarıiletken geçişi yaptığını göstermiştir. Kompozitlerin çekme modül değerleri de yapısındaki KD miktarının artmasıyla birlikte artmıştır. Üç farklı deneysel yöntem ile elde edilen sonuçlar birbirini desteklemektedir. Elde edilen tüm sonuçlar literatürdeki teorik ve deneysel veriler ile uyum içerisindedir.
Polymer Carbon Filler (CF) composites attract the attention of the industrial and academic community as a new composite product due to its properties such as flexibility, lightness, ease of processing and chemical resistance. The production of polymer CF composites in affordable costs by obtaining their optical, electrical, mechanical and thermal properties will extend its area of use according to needs. In this study, eight different composite film series such as PMMA/GNP, PMMA/MWCNT, PMMA/CM, PS/GNP, PS/MWCNT, PS/CM, PVA/GNP and PVA/MWCNT dispersions obtained by solution mixing method have been prepared and the electrical, optical, mechanical properties of the composites have beeen investigated. The electrical, optical and mechanical measurements have been performed by using two probe method, photon transmission technique and tensile test, respectively. The collected optic data have been interpreted with site percolation, while electrical and mechanical data have been evaluated by means of classic percolation and modified classic percolation theory, respectively. It has been determined that electrical, optical and mechanical percolation occurred in almost all of the composite structures. The optical band gap energies of the composites have been determined by using the Tauc method and the defect levels due to localized states in this band gap have been determined by using the Urbach relationship. According to the obtained results, it has been determined that, with increasing amount of CF doping in the polymer matrix, the optical band gap energy of the composites decreased while their electrical conductivity increased. The decrease in the band gap energies of composites, hence the increase on their electrical conductivity to the level of 10 -4 Siemens has been showed that the composite structure exhibits the insulator-semiconductor transition. The tensile modulus values of the composites have been increased with increasing amount of CF doping. The results obtained with three different experimental methods support each other. All results are consistent with the theoretical and experimental data in the literature.
Polymer Carbon Filler (CF) composites attract the attention of the industrial and academic community as a new composite product due to its properties such as flexibility, lightness, ease of processing and chemical resistance. The production of polymer CF composites in affordable costs by obtaining their optical, electrical, mechanical and thermal properties will extend its area of use according to needs. In this study, eight different composite film series such as PMMA/GNP, PMMA/MWCNT, PMMA/CM, PS/GNP, PS/MWCNT, PS/CM, PVA/GNP and PVA/MWCNT dispersions obtained by solution mixing method have been prepared and the electrical, optical, mechanical properties of the composites have beeen investigated. The electrical, optical and mechanical measurements have been performed by using two probe method, photon transmission technique and tensile test, respectively. The collected optic data have been interpreted with site percolation, while electrical and mechanical data have been evaluated by means of classic percolation and modified classic percolation theory, respectively. It has been determined that electrical, optical and mechanical percolation occurred in almost all of the composite structures. The optical band gap energies of the composites have been determined by using the Tauc method and the defect levels due to localized states in this band gap have been determined by using the Urbach relationship. According to the obtained results, it has been determined that, with increasing amount of CF doping in the polymer matrix, the optical band gap energy of the composites decreased while their electrical conductivity increased. The decrease in the band gap energies of composites, hence the increase on their electrical conductivity to the level of 10 -4 Siemens has been showed that the composite structure exhibits the insulator-semiconductor transition. The tensile modulus values of the composites have been increased with increasing amount of CF doping. The results obtained with three different experimental methods support each other. All results are consistent with the theoretical and experimental data in the literature.
Açıklama
Anahtar Kelimeler
Polimer Kompozitler, İnce Filmler, Karbon Dolgular, Perkolasyon, Elektriksel İletkenlik, Mekanik Özellikler, Optik Bant Aralığı Enerjisi, Urbach Enerjisi, Polymer Composites, Thin Films, Carbon Fillers, Percolation, Electrical Conductivity, Mechanical Properties, Optical Band Gap Energy, Urbach Energy