Beton dayanımı yetersiz betonarme taşıyıcı sistemlerin çelik konstrüksiyon ile güçlendirme tasarım esaslarının belirlenmesi
Yükleniyor...
Dosyalar
Tarih
2004
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada "beton dayanımı yetersiz betonarme taşıyıcı sistemlerde çelik konstrüksiyon ile kesitlerin taşıma gücü kapasiteleri arttırılarak bölgesel güçlendirme yoluyla betonarme yapılarda taşıma gücü güvenliğinin arttırılması için tasarım ilkelerinin belirlenmesi" amaçlandı. Tasarım zayıflıkları olarak ortaya çıkan yapısal düzensizlikler, bunların depremde yapının mekanik davranışına etkileri ve bu açıdan betonarme yapıların genel güçlendirme esasları da özetlendi. Plak döşemelerden, kiriş ve kolonlardan oluşan, betonarme perde içermeyen, 7 katlı, C14, C20, C25 C30 beton ve S220 ve S420 çelik malzeme kullanılarak sekiz adet konut türü minimum kesitlere sahip betonarme yapı taşıyıcı sistemleri tasarlandı. Bu sistemlerde bölgesel beton dayanımı yetersizlikleri oluşturularak bölgesel veya yerel güçlendirmenin teknik bakımdan yeterli ve ekonomik bakımdan uygun olduğu güçlendirme gerektiren yapılar durumuna getirildiler. Güçlendirme gerektiren bu taşıyıcı sistemlerin önce betonarme manto ve/veya perdelerle yapının taşıma gücü yetersizliklerini giderecek şekilde güçlendirme tasarımları yapıldı. Aynı taşıyıcı sistemlerde kesitlerin taşıma gücü kapasiteleri mevcut betonarme elemanlara bulonlu ve kaynaklı birleşimli çelik levha ve/veya profiller bağlanması tasarlanarak yapının taşıma gücü yetersizlikleri giderildi. Taşıyıcı eleman kesitlerinin yapıda süreksizlikler oluşturmayacak biçimde güçlendirilmesinin yapının taşıma gücü yetersizliğini gidereceği varsayıldı. Bu çalışmada yalnız bir katta sınırlı bir bölgede beton dayanımı yetersizliği bulunan betonarme taşıyıcı sistemin yeterli beton dayanımlı taşıma gücü güvenliği düzeyine güçlendirme maliyetlerinin çelikle bölgesel güçlendirme halindekine göre betonarme manto kullanılması halinde 6 defa daha, betonarme perdelerle güçlendirme halinde 7 defa daha büyük olduğu görüldü.
This work concentrates on "the determination of principles for the retrofitting or strengthening of reinforced concrete structures with poor concrete strength, aiming at increasing the level of confidence in structural safety by increasing the load carrying capacities of critical structural element sections". Structural irregularities occurring in the form of structural deficiencies, their influence on the earthquake safety and the principles of structural strengthening of reinforced concrete structures in general is also summarized. Reinforced concrete seven-storeyed eight residential buildings composed of slabs, beams and columns, without any shear-walls, were designed to minimum cross-sections using C14, C20, C25, C30 concrete strengths and S220 and S420 reinforcing steel. These structures were then brought into state of insufficient structural load bearing safety condition by assuming concretes of 7 MPa, 10 MPa, 12 MPa and 15 MPa characteristic strengths, respectively, in a certain region of each structure so as to obtain structures in which local retrofit or strengthening would be technically and economically feasible. Strengthening designs to bring them to their original states of structural safety were made for these unsafe structures using reinforced concrete jackets, reinforced concrete shear-walls. The insufficiencies in the structural safety levels of these structures were removed also by designing strengthening or retrofitting at the critical sections of the reinforced concrete elements with steel plate jackets and/or shapes with welded and bolted connections and ties. It was assumed that by strengthening the critical sections of the structural members without introducing discontinuities would remove the insufficiencies in the level of structural safety. In this work, for the reinforced concrete structures with insufficient concrete strength at a floor in a limited region, it was found that the cost of strengthening to the original level of structural safety with as-designed concrete strength is greater than that of steel by 6 times for reinforced concrete jacketing, and 7 times for reinforced concrete shear-walls.
This work concentrates on "the determination of principles for the retrofitting or strengthening of reinforced concrete structures with poor concrete strength, aiming at increasing the level of confidence in structural safety by increasing the load carrying capacities of critical structural element sections". Structural irregularities occurring in the form of structural deficiencies, their influence on the earthquake safety and the principles of structural strengthening of reinforced concrete structures in general is also summarized. Reinforced concrete seven-storeyed eight residential buildings composed of slabs, beams and columns, without any shear-walls, were designed to minimum cross-sections using C14, C20, C25, C30 concrete strengths and S220 and S420 reinforcing steel. These structures were then brought into state of insufficient structural load bearing safety condition by assuming concretes of 7 MPa, 10 MPa, 12 MPa and 15 MPa characteristic strengths, respectively, in a certain region of each structure so as to obtain structures in which local retrofit or strengthening would be technically and economically feasible. Strengthening designs to bring them to their original states of structural safety were made for these unsafe structures using reinforced concrete jackets, reinforced concrete shear-walls. The insufficiencies in the structural safety levels of these structures were removed also by designing strengthening or retrofitting at the critical sections of the reinforced concrete elements with steel plate jackets and/or shapes with welded and bolted connections and ties. It was assumed that by strengthening the critical sections of the structural members without introducing discontinuities would remove the insufficiencies in the level of structural safety. In this work, for the reinforced concrete structures with insufficient concrete strength at a floor in a limited region, it was found that the cost of strengthening to the original level of structural safety with as-designed concrete strength is greater than that of steel by 6 times for reinforced concrete jacketing, and 7 times for reinforced concrete shear-walls.
Açıklama
Anahtar Kelimeler
Betonarme, Güçlendirme, Çelik Konstrüksiyon, Taşıma Gücü Güvenliği, Betonarme Manto, Betonarme Perde