SO (1,3) grubunun çeşitli açılışları için casimir operatörleri
No Thumbnail Available
Date
2001
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Trakya Üniversitesi
Access Rights
info:eu-repo/semantics/openAccess
Abstract
ÖZET x,x'eR*3 4 boyutlu reel uzayın vektörleri, / = diag(l- 1,-1,-1) olmak üzere, glg' = I koşulu ile x' = gx Lorentz dönüşümlerinin G = 50(1,3) grubu ele alınmıştır. G grubunun bir g elemanının g = kan',ke 50(3), a e 50(1,1), n' e E(2), açılışı için g0 e G ve F(g) e LZ(G) olmak üzere T(gQ)F(g) = F(gg0) regüler temsilin MMV (/i, v = 0,1,2,3) jeneratörlerinin açık ifadeleri ve C, = gMM' gw M MVM v, C2=E,iypaMllvM pc Casimir operatörleri elde edilmiştir. geG, % = (p,m), 0
11 SUMMARY The G = £0(1,3) group of x' = gx Lorentz transformation with gig' = I condition where / = diag(l- 1,-1,-1) and x,x' are vectors of four dimensional real space 2?*3 is considered. The explicit expression of the MfJV(p,v = 0,1,2,3) generators of the T(g0)F(g) = F(gg0) regular representation and C, = g^'g^M^M^., C2 = e"vpa M MVM pa Casimir operators where g0<=G and F(g) e L2(G) for g = kan' where k e SO(3), a e 50(1,1), n' e E(2), decomposition of the element g of group G are obtained. For the matrix elements DfMi;fjM2 (g) of the irreducible representation Tz(g) = Tz(k)Tz(a)Tz(n') of the group G where geG, Z = (P,m), 0
11 SUMMARY The G = £0(1,3) group of x' = gx Lorentz transformation with gig' = I condition where / = diag(l- 1,-1,-1) and x,x' are vectors of four dimensional real space 2?*3 is considered. The explicit expression of the MfJV(p,v = 0,1,2,3) generators of the T(g0)F(g) = F(gg0) regular representation and C, = g^'g^M^M^., C2 = e"vpa M MVM pa Casimir operators where g0<=G and F(g) e L2(G) for g = kan' where k e SO(3), a e 50(1,1), n' e E(2), decomposition of the element g of group G are obtained. For the matrix elements DfMi;fjM2 (g) of the irreducible representation Tz(g) = Tz(k)Tz(a)Tz(n') of the group G where geG, Z = (P,m), 0
Description
Doktora
Keywords
Matematik, Mathematics