Kernel-endoregular modules and the morphic property
dc.authorid | Taşdemir, Özgür/0000-0003-2500-8255 | |
dc.authorwosid | Taşdemir, Özgür/B-3626-2019 | |
dc.contributor.author | Tasdemir, Ozgur | |
dc.contributor.author | Kosan, M. Tamer | |
dc.date.accessioned | 2024-06-12T10:50:11Z | |
dc.date.available | 2024-06-12T10:50:11Z | |
dc.date.issued | 2024 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | This paper describes properties of three certain classes of modules M over a ring R determined by conditions on isomorphic direct summands (less than or similar to circle plus):(1) The condition that whenever (Im lambda congruent to)M/Ker lambda less than or similar to M-circle plus then Ker lambda and Im lambda are direct summands of M for any endomorphism lambda is an element of End(M) (kernel-endoregular modules).(2)The condition that if M/A congruent to B where A, B less than or similar to M-circle plus then M/B congruent to A (iso-summand-morphic modules).(3 )The condition if M/A congruent to B where A, B <= M-circle plus , then M/B congruent to A (summand-morphic modules) which is precisely the internal cancellation property for modules. | en_US |
dc.description.sponsorship | The authors would like to express their gratitude for the referee's thorough review of the manuscript and the valuable remarks provided. | en_US |
dc.description.sponsorship | The authors would like to express their gratitude for the referee's thorough review of the manuscript and the valuable remarks provided. | en_US |
dc.identifier.doi | 10.1080/00927872.2023.2274951 | |
dc.identifier.endpage | 1825 | en_US |
dc.identifier.issn | 0092-7872 | |
dc.identifier.issn | 1532-4125 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85175810024 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1818 | en_US |
dc.identifier.uri | https://doi.org/10.1080/00927872.2023.2274951 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/17890 | |
dc.identifier.volume | 52 | en_US |
dc.identifier.wos | WOS:001098438300001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Inc | en_US |
dc.relation.ispartof | Communications In Algebra | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | (Co-)Hopfian Module | en_US |
dc.subject | C2 Modules | en_US |
dc.subject | (Dual-)Rickart Module | en_US |
dc.subject | D2 Modules | en_US |
dc.subject | Endoregular Module | en_US |
dc.subject | Morphic Module | en_US |
dc.subject | Unit-Regular Module | en_US |
dc.subject | Endomorphism-Rings | en_US |
dc.title | Kernel-endoregular modules and the morphic property | en_US |
dc.type | Article | en_US |