Kernel-endoregular modules and the morphic property
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor & Francis Inc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This paper describes properties of three certain classes of modules M over a ring R determined by conditions on isomorphic direct summands (less than or similar to circle plus):(1) The condition that whenever (Im lambda congruent to)M/Ker lambda less than or similar to M-circle plus then Ker lambda and Im lambda are direct summands of M for any endomorphism lambda is an element of End(M) (kernel-endoregular modules).(2)The condition that if M/A congruent to B where A, B less than or similar to M-circle plus then M/B congruent to A (iso-summand-morphic modules).(3 )The condition if M/A congruent to B where A, B <= M-circle plus , then M/B congruent to A (summand-morphic modules) which is precisely the internal cancellation property for modules.
Açıklama
Anahtar Kelimeler
(Co-)Hopfian Module, C2 Modules, (Dual-)Rickart Module, D2 Modules, Endoregular Module, Morphic Module, Unit-Regular Module, Endomorphism-Rings
Kaynak
Communications In Algebra
WoS Q Değeri
N/A
Scopus Q Değeri
Q2
Cilt
52
Sayı
5