On S-second spectrum of a module
dc.authorid | CEKEN, SECIL/0000-0002-7578-9320 | |
dc.contributor.author | Ceken, Secil | |
dc.date.accessioned | 2024-06-12T11:15:38Z | |
dc.date.available | 2024-06-12T11:15:38Z | |
dc.date.issued | 2022 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | Let R be a commutative ring with identity, S be a multiplicatively closed subset of R. A submodule N of an R-module M with ann(R)(N) boolean AND S = empty set is called an S-second submodule of M if there exists a fixed s is an element of S, and whenever rN subset of K, where r is an element of R and K is a submodule of M, then either rsN = 0 or sN subset of K. The set of all S-second submodules of M is called S-second spectrum of M and denoted by S-Specs (M). In this paper, we construct and study two topologies on S-Spec(s) (M). We investigate some connections between algebraic properties of M and topological properties of S-Spec(s) (M) such as seperation axioms, compactness, connectedness and irreducibility. | en_US |
dc.identifier.doi | 10.1007/s13398-022-01316-3 | |
dc.identifier.issn | 1578-7303 | |
dc.identifier.issn | 1579-1505 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85136707432 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s13398-022-01316-3 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/23990 | |
dc.identifier.volume | 116 | en_US |
dc.identifier.wos | WOS:000846393500001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer-Verlag Italia Srl | en_US |
dc.relation.ispartof | Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | S-Second Submodule | en_US |
dc.subject | S-Cotop Module | en_US |
dc.subject | S-Dual Quasi-Zariski Topology | en_US |
dc.subject | S-Dual Zariski Topology | en_US |
dc.subject | Dual Notion | en_US |
dc.title | On S-second spectrum of a module | en_US |
dc.type | Article | en_US |