On S-second spectrum of a module

dc.authoridCEKEN, SECIL/0000-0002-7578-9320
dc.contributor.authorCeken, Secil
dc.date.accessioned2024-06-12T11:15:38Z
dc.date.available2024-06-12T11:15:38Z
dc.date.issued2022
dc.departmentTrakya Üniversitesien_US
dc.description.abstractLet R be a commutative ring with identity, S be a multiplicatively closed subset of R. A submodule N of an R-module M with ann(R)(N) boolean AND S = empty set is called an S-second submodule of M if there exists a fixed s is an element of S, and whenever rN subset of K, where r is an element of R and K is a submodule of M, then either rsN = 0 or sN subset of K. The set of all S-second submodules of M is called S-second spectrum of M and denoted by S-Specs (M). In this paper, we construct and study two topologies on S-Spec(s) (M). We investigate some connections between algebraic properties of M and topological properties of S-Spec(s) (M) such as seperation axioms, compactness, connectedness and irreducibility.en_US
dc.identifier.doi10.1007/s13398-022-01316-3
dc.identifier.issn1578-7303
dc.identifier.issn1579-1505
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85136707432en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1007/s13398-022-01316-3
dc.identifier.urihttps://hdl.handle.net/20.500.14551/23990
dc.identifier.volume116en_US
dc.identifier.wosWOS:000846393500001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Italia Srlen_US
dc.relation.ispartofRevista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicasen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectS-Second Submoduleen_US
dc.subjectS-Cotop Moduleen_US
dc.subjectS-Dual Quasi-Zariski Topologyen_US
dc.subjectS-Dual Zariski Topologyen_US
dc.subjectDual Notionen_US
dc.titleOn S-second spectrum of a moduleen_US
dc.typeArticleen_US

Dosyalar