On S-second spectrum of a module
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer-Verlag Italia Srl
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let R be a commutative ring with identity, S be a multiplicatively closed subset of R. A submodule N of an R-module M with ann(R)(N) boolean AND S = empty set is called an S-second submodule of M if there exists a fixed s is an element of S, and whenever rN subset of K, where r is an element of R and K is a submodule of M, then either rsN = 0 or sN subset of K. The set of all S-second submodules of M is called S-second spectrum of M and denoted by S-Specs (M). In this paper, we construct and study two topologies on S-Spec(s) (M). We investigate some connections between algebraic properties of M and topological properties of S-Spec(s) (M) such as seperation axioms, compactness, connectedness and irreducibility.
Açıklama
Anahtar Kelimeler
S-Second Submodule, S-Cotop Module, S-Dual Quasi-Zariski Topology, S-Dual Zariski Topology, Dual Notion
Kaynak
Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
116
Sayı
4