On S-second spectrum of a module

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer-Verlag Italia Srl

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let R be a commutative ring with identity, S be a multiplicatively closed subset of R. A submodule N of an R-module M with ann(R)(N) boolean AND S = empty set is called an S-second submodule of M if there exists a fixed s is an element of S, and whenever rN subset of K, where r is an element of R and K is a submodule of M, then either rsN = 0 or sN subset of K. The set of all S-second submodules of M is called S-second spectrum of M and denoted by S-Specs (M). In this paper, we construct and study two topologies on S-Spec(s) (M). We investigate some connections between algebraic properties of M and topological properties of S-Spec(s) (M) such as seperation axioms, compactness, connectedness and irreducibility.

Açıklama

Anahtar Kelimeler

S-Second Submodule, S-Cotop Module, S-Dual Quasi-Zariski Topology, S-Dual Zariski Topology, Dual Notion

Kaynak

Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

116

Sayı

4

Künye