Yazar "Ozgacar, Selda Ozgen" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Antibacterial, antifungal and antimycobacterial activities of some pyrazoline, hydrazone and chalcone derivatives(Walter De Gruyter Gmbh, 2015) Evranos-Aksoz, Begum; Onurdag, Fatma Kaynak; Ozgacar, Selda OzgenTwenty-seven previously reported chalcones and their pyrazoline and hydrazone derivatives as well as two further chalcones have been screened for their antimicrobial, antifungal and antimycobacterial activities against standard microbial strains and drug resistant isolates. The minimum inhibitory concentration (MIC) value of each compound was determined by a two-fold serial microdilution technique. The compounds were found to possess a broad spectrum of antimicrobial activities with MIC values of 8-128 mu g/mL. One compound [(E)-1(4-hydroxyphenyl)-3-p-tolylprop-2-en-1-one] had equal activity with gentamycin (8 mu g/mL) against Enterococcus faecalis. Chalcones were found to be more active than their hydrazone and 2-pyrazoline derivatives against Staphylococcus aureus ATCC 29213 and E. faecalis ATCC 29212.Öğe Antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. isolated from chicken samples(Oxford Univ Press, 2014) Er, Buket; Demirhan, Burak; Onurdag, Fatma Kaynak; Ozgacar, Selda Ozgen; Oktem, Aysel BayhanSalmonella spp. are widespread foodborne pathogens that contaminate egg and poultry meats. Attachment, colonization, as well as biofilm formation capacity of Salmonella spp. on food and contact surfaces of food may cause continuous contamination. Biofilm may play a crucial role in the survival of salmonellae under unfavorable environmental conditions, such as in animal slaughterhouses and processing plants. This could serve as a reservoir compromising food safety and human health. Addition of antimicrobial preservatives extends shelf lives of food products, but even when products are supplemented with adequate amounts of preservatives, it is not always possible to inhibit the microorganisms in a biofilm community. In this study, our aims were i) to determine the minimum inhibitory concentrations (MIC) and minimum biofilm inhibitory concentrations (MBIC) of selected preservatives against planktonic and biofilm forms of Salmonella spp. isolated from chicken samples and Salmonella Typhimurium SL1344 standard strain, ii) to show the differences in the susceptibility patterns of same strains versus the planktonic and biofilm forms to the same preservative agent, and iii) to determine and compare antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. For this purpose, Salmonella Typhimurium SL1344 standard strain and 4 Salmonella spp. strains isolated from chicken samples were used. Investigation of antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. was done according to Clinical and Laboratory Standards Institute M100-S18 guidelines and BioTimer assay, respectively. As preservative agents, pure ciprofloxacin, sodium nitrite, potassium sorbate, sodium benzoate, methyl paraben, and propyl paraben were selected. As a result, it was determined that MBIC values are greater than the MIC values of the preservatives. This result verified the resistance seen in a biofilm community to food preservatives and highlighted this subject, not to be ignored in food applications.