Ceken, SecilYuksel, Cem2024-06-122024-06-1220212473-6988https://doi.org/10.3934/math.2021751https://hdl.handle.net/20.500.14551/24042In this paper, we introduce and study the notions of M-strongly hollow and M-PS-hollow ideals where M is a module over a commutative ring R. These notions are generalizations of strongly hollow ideals. We investigate some properties and characterizations of M-strongly hollow (M-PS-hollow) ideals. Then we define and study a topology on the set of all M-PS-hollow ideals of a commutative ring R. We investigate when this topological space is irreducible, Noetherian, T-0, T-1 and spectral space.en10.3934/math.2021751info:eu-repo/semantics/openAccessStrongly Hollow SubmodulePseudo Strongly Hollow SubmoduleM-Strongly Hollow IdealPSH-Zariski TopologyFiniteness ConditionsModulesGeneralizations of strongly hollow ideals and a corresponding topologyArticle6121298613003Q1WOS:0006970245000012-s2.0-85115117598Q2