Sucu, SerpilAktas, SabanOkan, S. ErolAkdeniz, ZehraVignolo, Patrizia2024-06-122024-06-1220111050-29471094-1622https://doi.org/10.1103/PhysRevA.84.065602https://hdl.handle.net/20.500.14551/24937We study the localization properties of noninteracting waves propagating in a speckle-like potential superposed on a one-dimensional lattice. Using a combined decimation-renormalization procedure, we estimate the localization length for a tight-binding Hamiltonian where site energies are square-sinc-correlated random variables. By decreasing the width of the correlation function, the disorder patterns approach a delta-correlated disorder, and the localization length becomes almost energy independent in the strong disorder limit. We show that this regime can be reached for a size of the speckle grains on the order of (lower than) four lattice steps.en10.1103/PhysRevA.84.065602info:eu-repo/semantics/openAccessDiffusionAbsenceAnderson localization in optical lattices with speckle disorderArticle846Q1WOS:0002985644000142-s2.0-84855266329N/A