Jayaram, ChillumuntalaTekir, UnsalKoc, SuatCeken, Secil2024-06-122024-06-1220230092-78721532-4125https://doi.org/10.1080/00927872.2022.2137519https://hdl.handle.net/20.500.14551/18952Recall that a commutative ring R is said to be a normal ring if it is reduced and every two distinct minimal prime ideals are comaximal. A finitely generated reduced R-module M is said to be a normal module if every two distinct minimal prime submodules are comaximal. The concepts of normal modules and locally torsion free modules are different, whereas they are equal in theory of commutative rings. We give many properties and examples of normal modules, we use them to characterize locally torsion free modules and Baer modules. Also, we give the topological characterizations of normal modules.en10.1080/00927872.2022.2137519info:eu-repo/semantics/closedAccessBaer ModulesLocally Torsion-Free ModulesNormal ModulesQuasi-Regular ModulesBaerOn normal modulesArticle51414791491Q3WOS:0008733303000012-s2.0-85141063493Q2