Tasdemir, OzgurKosan, M. Tamer2024-06-122024-06-1220240092-78721532-4125https://doi.org/10.1080/00927872.2023.2274951https://hdl.handle.net/20.500.14551/17890This paper describes properties of three certain classes of modules M over a ring R determined by conditions on isomorphic direct summands (less than or similar to circle plus):(1) The condition that whenever (Im lambda congruent to)M/Ker lambda less than or similar to M-circle plus then Ker lambda and Im lambda are direct summands of M for any endomorphism lambda is an element of End(M) (kernel-endoregular modules).(2)The condition that if M/A congruent to B where A, B less than or similar to M-circle plus then M/B congruent to A (iso-summand-morphic modules).(3 )The condition if M/A congruent to B where A, B <= M-circle plus , then M/B congruent to A (summand-morphic modules) which is precisely the internal cancellation property for modules.en10.1080/00927872.2023.2274951info:eu-repo/semantics/closedAccess(Co-)Hopfian ModuleC2 Modules(Dual-)Rickart ModuleD2 ModulesEndoregular ModuleMorphic ModuleUnit-Regular ModuleEndomorphism-RingsKernel-endoregular modules and the morphic propertyArticle52518181825N/AWOS:0010984383000012-s2.0-85175810024Q2