Effect of gas type and application distance on atmospheric pressure plasma jet-treated flax composites

dc.authoridDamar, Irem/0000-0002-5521-2233
dc.authorwosidDamar, Irem/AAG-8565-2021
dc.authorwosidhüner, ümit/L-8952-2013
dc.contributor.authorHuner, Umit
dc.contributor.authorGulec, Haci Ali
dc.contributor.authorDamar Huner, Irem
dc.date.accessioned2024-06-12T10:52:47Z
dc.date.available2024-06-12T10:52:47Z
dc.date.issued2017
dc.departmentTrakya Üniversitesien_US
dc.description.abstractThis study reports on the effect of atmospheric pressure plasma jet treatment on the flax fiber and flax-reinforced epoxy. The atmospheric pressure plasma jet was carried out by using four different gasses and various application distance in the range of 30-40mm. The treatments were investigated by means of contact angle, attenuated total reflectance-Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy and mechanical tests. Depending on the application parameters, the rate of increase in water contact angle varied from 49% to 92%. While atomic force microscopy and scanning electron microscopy investigations exhibited changed surface morphology, FTIR presented interactions at the molecular level. Improvement in mechanical properties was obtained for all atmospheric pressure plasma jet applications, while the increase in tensile strength in the composite material reached 180%, and the increase in flexural strength was 140%. The atmospheric pressure plasma jet method, according to similar plasma applications, came to the forefront with the short processing time and the intensity of the effect it created.en_US
dc.description.sponsorshipFound of Scientific Research Projects of Trakya University (TUBAP) [2015/54]en_US
dc.description.sponsorshipThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by the Found of Scientific Research Projects of Trakya University (TUBAP; grant no: 2015/54)en_US
dc.identifier.doi10.1177/0731684417703490
dc.identifier.endpage1210en_US
dc.identifier.issn0731-6844
dc.identifier.issn1530-7964
dc.identifier.issue17en_US
dc.identifier.scopus2-s2.0-85028653948en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1197en_US
dc.identifier.urihttps://doi.org/10.1177/0731684417703490
dc.identifier.urihttps://hdl.handle.net/20.500.14551/18831
dc.identifier.volume36en_US
dc.identifier.wosWOS:000408854800001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofJournal Of Reinforced Plastics And Compositesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAtmospheric Pressure Plasma Jeten_US
dc.subjectFlaxen_US
dc.subjectContact Angleen_US
dc.subjectAtomic Force Microscopyen_US
dc.subjectFTIRen_US
dc.subjectUnsaturated Polyester Compositesen_US
dc.subjectMechanical-Propertiesen_US
dc.subjectSurfaceen_US
dc.subjectFibersen_US
dc.subjectAdhesionen_US
dc.subjectFabricsen_US
dc.titleEffect of gas type and application distance on atmospheric pressure plasma jet-treated flax compositesen_US
dc.typeArticleen_US

Dosyalar