Yapay sinir ağları ile süne zararlısının buğday danesi üzerindeki etkilerinin belirlenmesi
Yükleniyor...
Tarih
2014
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Trakya Üniversitesi Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Buğday Türkiye için olduğu kadar dünyadaki pek çok ülke için de stratejik bir üründür ve süne zararlısı ise buğday üretiminde temel bir sıkıntıdır. Süne zararlısı, buğdayı bitkisel büyüme, baş verme ve olgunluk dönemlerinde negatif olarak etkiler. Bu etki, buğday danesi üzerinde verim kaybı ve kalitede düşüş olmak üzere iki çeşit hasar meydana getirir. Bu kalite düşüşü de insan beslenmesinde temel gıda maddesi olan buğdaydan üretilen pek çok üründe üretim kayıplarına sebep olmak-tadır. Bu durumu ortadan kaldırabilmek için buğday daneleri işlenmeden önce süne hasarlı olanların hasarlı olmayanlardan ayrılması gerekmektedir. Bu ise Türkiye'de uzmanlar tarafından gerçekleştirilmektedir. Ancak bu hasar kimi zaman çok be-lirgin ve gözle anlaşılabiliyorken kimi zaman anlaşılamayacak şekilde olabilir. Bu durumda hasarlı buğday danelerini hasar-sızlar arasından gözle tespit edebilmek mümkün olmayabilir. Sunulan çalışmada buğday danesi üzerindeki süne zararlısının oluşturduğu hasarı tespit etmek amacıyla Yapay Sinir Ağlarına (YSA) dayalı otomatik bir görüntü tanıma sistemi sunulmak-tadır.
Wheat is a very strategic crop for Turkey as well as many other countries and sunn pest is a major constraint to the production of wheat. Sunn pest negatively a?ects wheat crops during their vegetative growth, heading and maturity stages. This effect causes two types of damage on wheat grain by leading to wheat yield loss and grain quality decrease. The decrease in the quality leads in turn to production losses in many products which depends on wheat. Wheat crops therefore should be examined before the production processes in order to separate the sunn pest affected ones from non-affected ones. Such a discrimination task in Turkey is performed by experts. However, the damage can sometimes be visible but also sometimes it migth be hard to notice the damage. So, the damaged grains may not be distinguished among undamaged ones with simple eye observation. In this study, an automatic system which uses Artificial Neural Networks (ANN) to determine the wheat grains damaged by sunn pest is proposed
Wheat is a very strategic crop for Turkey as well as many other countries and sunn pest is a major constraint to the production of wheat. Sunn pest negatively a?ects wheat crops during their vegetative growth, heading and maturity stages. This effect causes two types of damage on wheat grain by leading to wheat yield loss and grain quality decrease. The decrease in the quality leads in turn to production losses in many products which depends on wheat. Wheat crops therefore should be examined before the production processes in order to separate the sunn pest affected ones from non-affected ones. Such a discrimination task in Turkey is performed by experts. However, the damage can sometimes be visible but also sometimes it migth be hard to notice the damage. So, the damaged grains may not be distinguished among undamaged ones with simple eye observation. In this study, an automatic system which uses Artificial Neural Networks (ANN) to determine the wheat grains damaged by sunn pest is proposed
Açıklama
Anahtar Kelimeler
Süne, Buğday, Wheat, Artificial Neural Networks, Sunn Pest, Yapay Sinir Ağları (YSA)
Kaynak
Trakya University Journal of Natural Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
15
Sayı
1
Künye
Turhal, Ü , Turhal, K . (2015).Determinination of efects of sunn pest on wheat grain by artificial neural networks . Trakya University Journal of Natural Sciences, 15 (1), 25-30. Retrieved from http://dergipark.org.tr/trkjnat/issue/25382/267873