Futbol Müsabakaları ile İlgili Tweetlerin Anlık Duygu Analizi

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Sosyal medya, insanların kendilerini ifade edebildikleri ortamlar olarak çok kullanılmaktadır. Bu sebeple Facebook, Instagram ve Twitter gibi sosyal medya ortamlarının kullanıcı sayıları giderek artmaktadır. Sosyal medya kullanıcılarının paylaşımları analiz edilerek ilgili konu hakkındaki duyguları ortaya çıkarılabilmektedir. Sosyal medya platformu olan Twitter da politikacılar, spor kulüpleri, şirketler, aktivistler kısaca neredeyse tüm bireyler ve kurumlar için kendilerini ifade etme ortamı haline gelmiştir. Hemen hemen tüm futbol takımlarının taraftarları için haberlerini paylaştıkları Twitter hesapları vardır. Kullanıcılar Twitter’da futbol müsabakası esnasında ve sonrasında da mesaj paylaşabilmektedir. Bu çalışmanın konusu, Twitter ortamında futbol takımları ve futbol müsabakaları hakkında Twitter kullanıcılarının paylaşımlarının duygu analizi ile ilgilidir. Bu çalışmada Twitter’da futbol müsabakaları hakkında paylaşılan 30.000 Türkçe tweet ile anlık duygu analizi yapılmıştır. Eğitim setlerindeki sınıflandırma hatalarını en aza indirmek için toplanmış olan tweetler el ile etiketlendikten sonra yine aynı kişi tarafından farklı zamanlarda beşer defa kontrol edilmiştir. Bu etiketlemede olumlu, olumsuz, tarafsız ve alakasız olarak 4 duygu sınıfı kullanılmıştır. Bu etiketlenmiş tweetlerden farklı özniteliklere sahip 12 farklı eğitim seti oluşturulmuştur. Oluşturulan bu eğitim setleri kullanılarak farklı sınıflama algoritmaları ile modeller çıkarılmış ve bu modellerin çapraz doğrulama ile sınıflama başarımları bulunmuştur. Farklı özniteliklere sahip olarak oluşturduğumuz eğitim setleri, belirlenen sınıflandırma algoritmaları ile test edilmiş ve algoritmalarının sınıflandırma doğrulukları; Naive Bayes algoritması için %84.30, K-En Yakın Komşu (KNN- K-Nearest Neighborhood) algoritması için %87.73, C4.5 algoritması için %89.60, Destek Vektör Makinesi (SVM- Support Vector Machine) algoritması için %92.30 olarak bulunmuştur. Çalışmada zemberek kütüphanesi kullanılarak Türkçe tweetlerde yaklaşık 48.000 kelimenin düzeltmesi, sınıflandırma başarımına olumlu katkı sağlamıştır. Ayrıca futbol müsabakaları hakkında paylaşılan tweetleri anlık olarak toplayıp, oluşturulan modeller ile bu tweetlerin sınıfını tespit ederek sınıflara ait sonuçları gerçek zamanlı görselleştiren bir uygulama geliştirilmiştir.

Açıklama

Anahtar Kelimeler

Kaynak

Avrupa Bilim ve Teknoloji Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

0

Sayı

Ejosat Özel Sayı 2020 (ISMSIT)

Künye