Wave propagation in double walled carbon nanotubes by using doublet mechanics theory
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Bv
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Flexural and axial wave propagation in double walled carbon nanotubes embedded in an elastic medium and axial wave propagation in single walled carbon nanotubes are investigated. A length scale dependent theory which is called doublet mechanics is used in the analysis. Governing equations are obtained by using Hamilton principle. Doublet mechanics results are compared with classical elasticity and other size dependent continuum theories such as strain gradient theory, nonlocal theory and lattice dynamics. In addition, experimental wave frequencies of graphite are compared with the doublet mechanics theory. It is obtained that doublet mechanics gives accurate results for flexural and axial wave propagation in nanotubes. Thus, doublet mechanics can be used for the design of electro-mechanical nano-devices such as nanomotors, nanosensors and oscillators.
Açıklama
Anahtar Kelimeler
Doublewalled Carbon Nanotubes, Wave Propagation, Doublet Mechanics, Elasticity
Kaynak
Physica E-Low-Dimensional Systems & Nanostructures
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
93