The melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulations

dc.authoridÇeltek, Murat/0000-0001-7737-0411
dc.authoridDömekeli, Ünal/0000-0003-1469-2602
dc.authoridsengul, sedat/0000-0003-2690-9354
dc.authorwosidÇeltek, Murat/I-7813-2019
dc.authorwosidcanan, cem/Y-7890-2019
dc.authorwosidDömekeli, Ünal/W-4061-2017
dc.authorwosidsengul, sedat/AAY-6830-2021
dc.contributor.authorDomekeli, U.
dc.contributor.authorSengul, S.
dc.contributor.authorCeltek, M.
dc.contributor.authorCanan, C.
dc.date.accessioned2024-06-12T11:08:15Z
dc.date.available2024-06-12T11:08:15Z
dc.date.issued2018
dc.departmentTrakya Üniversitesien_US
dc.description.abstractThe melting mechanism for Pd0.25Ni0.75 alloy nanoparticles (NPs) was investigated using molecular dynamics (MD) simulations with quantum Sutton-Chen many-body potentials. NPs of six different sizes ranging from 682 to 22,242 atoms were studied to observe the effect of size on the melting point. The melting temperatures of the NPs were estimated by following the changes in both the thermodynamic and structural quantities such as the total energy, heat capacity and Lindemann index. We also used a thermodynamics model to better estimate the melting point and to check the accuracy of MD simulations. We observed that the melting points of the NPs decreased as their sizes decreased. Although the MD simulations for the bulk system yielded higher melting temperatures because of the lack of a seed for the liquid phase, the melting temperatures determined for both the bulk material and the NPs are in good agreement with those predicted from the thermodynamics model. The melting mechanism proceeds in two steps: firstly, a liquid-like shell is formed in the outer regions of the NP with increasing temperature. The thickness of the liquid-like shell increases with increasing temperature until the shell reaches a critical thickness. Then, the entire Pd-Ni NP including core-related solid-like regions melts at once.en_US
dc.identifier.doi10.1080/14786435.2017.1406671
dc.identifier.endpage387en_US
dc.identifier.issn1478-6435
dc.identifier.issn1478-6443
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85035136955en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage371en_US
dc.identifier.urihttps://doi.org/10.1080/14786435.2017.1406671
dc.identifier.urihttps://hdl.handle.net/20.500.14551/22369
dc.identifier.volume98en_US
dc.identifier.wosWOS:000428268700002en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofPhilosophical Magazineen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMelting Mechanismen_US
dc.subjectClassical Molecular Dynamics Simulationsen_US
dc.subjectBond-Order Parameteren_US
dc.subjectLindemann Indexen_US
dc.subjectNanoparticleen_US
dc.subjectSelf-Diffusion Coefficienten_US
dc.subjectTransport-Propertiesen_US
dc.subjectPden_US
dc.subjectNien_US
dc.subjectNanoclustersen_US
dc.subjectCatalystsen_US
dc.titleThe melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulationsen_US
dc.typeArticleen_US

Dosyalar