Geometric network simulation of high porosity foods

dc.contributor.authorGueven, A.
dc.contributor.authorHicsasmaz, Z.
dc.date.accessioned2024-06-12T10:56:00Z
dc.date.available2024-06-12T10:56:00Z
dc.date.issued2011
dc.departmentTrakya Üniversitesien_US
dc.description.abstractSolid foods are formed of a network of air cells distributed within a solid matrix. Size of air cells and how they are interconnected influence moisture sorption, thermal conductivity, aroma retention and texture of cellular foods. Available geometric pore structure models widely used in petroleum reservoir engineering, soil science, and catalysis are for low porosity (<= 0.4) materials. However, food materials generally have higher porosities (0.5-0.9). Microstructure of cookie (porosity = 0.54) and bread (porosity = 0.90) samples were simulated using the one-dimensional (1-D) corrugated pore model. Model parameters were: Unit cell dimensions; number of capillary segments, number of diameter sub-ranges, geometric placement of capillary segments in the unit cell; capillary segment length, and the seed number in random number generation. Accurate simulation of porosity depended on number of corrugated pores, and thus the number of diameter sub-ranges in the unit cell. For the cookie sample, a cubic unit cell that was able to accommodate more than a single capillary segment in a unit square and 3 diameter sub-ranges gave realistic results. Simulation of the bread crumb required a similar cubic unit cell arrangement with 12 diameter sub-ranges. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.description.sponsorshipTUBITAK [TOGTAG-1299]; DPT [DPT 97-03-14-02]en_US
dc.description.sponsorshipThe authors wish to thank TUBITAK for supporting the Project TOGTAG-1299 that supplied the image analysis software, SIGMA SCAN PRO 6.0 and to DPT for supporting the Project DPT 97-03-14-02 that supplied FORTRAN POWER STATION 4.0.en_US
dc.identifier.doi10.1016/j.apm.2011.03.047
dc.identifier.endpage4840en_US
dc.identifier.issn0307-904X
dc.identifier.issue10en_US
dc.identifier.scopus2-s2.0-79957689781en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage4824en_US
dc.identifier.urihttps://doi.org/10.1016/j.apm.2011.03.047
dc.identifier.urihttps://hdl.handle.net/20.500.14551/19634
dc.identifier.volume35en_US
dc.identifier.wosWOS:000292176200012en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofApplied Mathematical Modellingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCellular Foodsen_US
dc.subjectMathematical Modelingen_US
dc.subjectGeometric Network Modelen_US
dc.subjectPorosityen_US
dc.subjectMicrostructureen_US
dc.subjectPorous Mediaen_US
dc.subjectDigital Image-Analysisen_US
dc.subjectBread Crumb Grainen_US
dc.subjectPorous-Mediaen_US
dc.subjectPore Structureen_US
dc.subjectTransporten_US
dc.subjectBakingen_US
dc.subjectModelen_US
dc.subjectMicrostructureen_US
dc.subjectPolydextroseen_US
dc.subjectPredictionen_US
dc.titleGeometric network simulation of high porosity foodsen_US
dc.typeArticleen_US

Dosyalar