Individuals with a COVID-19 history exhibit asymmetric gait patterns despite full recovery

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

COVID-19 is a multisystem infectious disease affecting the body systems. Its neurologic complications include -but are not limited to headache, loss of smell, encephalitis, and cerebrovascular accidents. Even though gait analysis is an objective measure of the neuro-motor system and may provide significant information about the pathophysiology of specific diseases, no studies have investigated the gait characteristics in adults after full recovery from COVID-19. This was a cross-sectional, controlled study that included 12 individuals (mean age, 23.0 +/- 4.1 years) with mild-to-moderate COVID-19 history (COVD) and 20 sedentary controls (CONT; mean age, 24.0 +/- 3.6 years). Gait was evaluated using inertial sensors on a motorized treadmill. Spatial-temporal gait parameters and gait symmetry were calculated by using at least 512 consecutive steps for each participant. The effect-size analyses were utilized to interpret the impact of the results. Spatial-temporal gait characteristics were comparable between the two groups. The COVD group showed more asymmetrical gait patterns than the CONT group in the double support duration symmetry (p = 0.042), single support duration symmetry (p = 0.006), loading response duration symmetry (p = 0.042), and pre-swing duration symmetry (p = 0.018). The effect size analyses of the differences showed large effects (d = 0.68-0.831). Individuals with a history of mild-to-moderate COVID-19 showed more asymmetrical gait patterns than individuals without a disease history. Regardless of its severity, the multifaceted long-term effects of COVID-19 need to be examined and the scope of clinical follow-up should be detailed.

Açıklama

Anahtar Kelimeler

SARS-Cov2, Coronavirus, Gait, Neurologic Consequences, Biomechanical Phenomena, Gait Analysis, Musculoskeletal, Neural Physiological Phenomena, Symmetry

Kaynak

Journal Of Biomechanics

WoS Q Değeri

Q3

Scopus Q Değeri

Q1

Cilt

137

Sayı

Künye