Electrical, mechanical, and optical changes in MWCNT-doped PMMA composite films

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Sage Publications Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, we report the preparation of poly (methyl methacrylate)/multi-walled carbon nanotube (MWCNT) composite thin films by simple and efficient solution mixing and ultrasonic method and the electrical, optical, and mechanical characterizations. Scattered light intensity (I-sc), tensile modulus (E), and surface conductivity (sigma) of these composites have increased with the addition of MWCNT into the composite. The observed behavior in electrical, optical, and mechanical properties of the poly (methyl methacrylate)/MWCNT composites was interpreted by site and classical percolation theory. The optical mechanical and electrical percolation thresholds of poly (methyl methacrylate)/MWCNT composites were determined as phi(op)= 3 wt%, phi (m)= 0 wt%, and phi(sigma) = 5 wt%, respectively. The optical (t(op)), mechanical (t(m)), and electrical (t(sigma)) critical exponents were calculated as 2.23, 0.43, and 0.11, respectively. Both the tensile modulus and tensile strength of poly (methyl methacrylate)/MWCNT composites were increased with increasing MWCNT content until it reaches to 10 wt%. However, above phi = 10 wt%, the mechanical properties of the composites were decreased due to the aggregation of MWCNTs, while the toughness does not show a significant change until phi = 10 wt% MWCNT content, whereas it was decreased above this value.

Açıklama

Anahtar Kelimeler

Poly (Methyl Methacrylate) Composites, Mechanical Percolation, Surface Conductivity, Tensile Modulus, Multi Walled Carbon Nanotube, Carbon Nanotubes, Percolation-Threshold, Polymer Nanocomposites, Graphene Oxide, Conductivity, Behavior, Dispersion, Rheology, Modulus, Matrix

Kaynak

Journal Of Composite Materials

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

54

Sayı

18

Künye