On the Construction Structures of 3 × 3 Involutory MDS Matrices over F2m

dc.authorscopusid57190742211
dc.authorscopusid57962725800
dc.authorscopusid8240135300
dc.authorscopusid15833929800
dc.authorscopusid57962028600
dc.contributor.authorKurt Pehlivanoğlu M.
dc.contributor.authorAli Demir M.
dc.contributor.authorBüyüksaraçoğlu Sakallı F.
dc.contributor.authorAkleylek S.
dc.contributor.authorTolga Sakallı M.
dc.date.accessioned2024-06-12T10:24:46Z
dc.date.available2024-06-12T10:24:46Z
dc.date.issued2022
dc.descriptionInternational Conference on Nonlinear Dynamics and Applications, ICNDA 2022 -- 9 March 2022 through 11 March 2022 -- -- 284839en_US
dc.description.abstractIn this paper, we propose new construction structures, in other words, transposition-permutation path patterns for 3 × 3 involutory and MDS permutation-equivalent matrices over F23 and F24. We generate 3 × 3 involutory and MDS matrices over F23 and F24 by using the matrix form given in [1], and then all these matrices are analyzed by finding all their permutation-equivalent matrices. After that, we extract whether there are any special permutation patterns, especially for this size of the matrix. As a result, we find new 28,088 different transposition-permutation path patterns to directly construct 3 × 3 involutory and MDS matrices from any 3 × 3 involutory and MDS representative matrix over F23 and F24. The 35 patterns are in common with these finite fields. By using these new transposition-permutation path patterns, new 3 × 3 involutory and MDS matrices can be generated especially for different finite fields such as F28 (is still an open problem because of the large search space). Additionally, the idea of finding the transposition-permutation path patterns can be applicable to larger dimensions such as 8 × 8, 16 × 16, and 32 × 32. To the best of our knowledge, the idea given in this paper to find the common and unique transposition-permutation path patterns over different finite fields is the first work in the literature. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.identifier.doi10.1007/978-3-030-99792-2_48
dc.identifier.endpage595en_US
dc.identifier.isbn9.78303E+12
dc.identifier.issn2213-8684
dc.identifier.scopus2-s2.0-85141759151en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage587en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-99792-2_48
dc.identifier.urihttps://hdl.handle.net/20.500.14551/16007
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media B.V.en_US
dc.relation.ispartofSpringer Proceedings in Complexityen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDiffusion Matrices; Lightweight Cryptography; Mds Matrix; Permutation-Equivalent Matricesen_US
dc.titleOn the Construction Structures of 3 × 3 Involutory MDS Matrices over F2men_US
dc.typeConference Objecten_US

Dosyalar