Dual Zariski Spaces of Modules
Küçük Resim Yok
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
World Scientific Publ Co Pte Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let R be a commutative ring with identity, M be an R-module, L (M ) denote the set of all submodules of M and G subset of L ( M) \ { 0(M) } . For any submodule N of M, we set GV(d) ( N) = { K is an element of G : K subset of N } and G zeta(d) (M ) = { GV(d) ( N) : N is an element of L (M ) } . Consider chi subset of L ( R) \ { R } , where L (R ) is the set of all ideals of R. We set chi V (I ) = { J is an element of chi : I subset of J } and chi zeta (R ) = { chi V (I ) : I is an element of L (R ) } for any ideal I of R. In this paper, we investigate when, for arbitrary chi and G as above, chi zeta (R ) and G zeta(d) (M ) form a topology and a semimodule, respectively. We investigate the structure of G zeta(d) (M ) in the case that it is a semimodule.
Açıklama
Anahtar Kelimeler
Dual Zariski Semimodule, Chi-Zariski Semiring, Center Dot-Coprime Submodule, Subtractive Subspace
Kaynak
Algebra Colloquium
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
30
Sayı
4