Lie-algebraic description of the quantum superintegrable Smorodinsky-Winternitz system in n dimensions
dc.contributor.author | Kerimov, G. A. | |
dc.date.accessioned | 2024-06-12T11:18:41Z | |
dc.date.available | 2024-06-12T11:18:41Z | |
dc.date.issued | 2012 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | We apply the potential group method to a family of n-dimensional quantum Smorodinsky-Winternitz systems. The Hamiltonians of the systems are associated with first-order Casimir operators of the unitary group U(3n) restricted to certain subspaces of carrier space of the symmetric representation. Hence, the group U(3n) describes fixed energy states of a family of Smorodinsky-Winternitz systems with different potential strength. Moreover, it is shown that 2n - 1 integrals of motions (including the Hamiltonian) are related to Casimir operators of U(3n) and its subgroups. | en_US |
dc.identifier.doi | 10.1088/1751-8113/45/18/185201 | |
dc.identifier.issn | 1751-8113 | |
dc.identifier.issn | 1751-8121 | |
dc.identifier.issue | 18 | en_US |
dc.identifier.scopus | 2-s2.0-84860320279 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1088/1751-8113/45/18/185201 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/24923 | |
dc.identifier.volume | 45 | en_US |
dc.identifier.wos | WOS:000303612100007 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Iop Publishing Ltd | en_US |
dc.relation.ispartof | Journal Of Physics A-Mathematical And Theoretical | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Deformations | en_US |
dc.subject | Oscillator | en_US |
dc.subject | Scattering | en_US |
dc.title | Lie-algebraic description of the quantum superintegrable Smorodinsky-Winternitz system in n dimensions | en_US |
dc.type | Article | en_US |