Scattering from the potential barrier V=cosh(-2)wx from the path integration over SO(1,2)
dc.contributor.author | Ahmedov, H | |
dc.contributor.author | Duru, IH | |
dc.date.accessioned | 2024-06-12T11:20:44Z | |
dc.date.available | 2024-06-12T11:20:44Z | |
dc.date.issued | 1997 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | Unitary irreducible representation of the group SO(1,2) is obtained in the mixed basis, i.e, between the compact and non-compact bases, and new addition theorems are derived which are required in path integral applications involving a positively signed potential. The Green function for the potential barrier V = cosh(-2) omega is evaluated from the path integration over the coset space SO(1,2)/K where K is the compact subgroup. The transition and the reflection coefficients are given. Results for the moving barrier V = cosh(-2) omega(x - g(0)t) are also presented. | en_US |
dc.identifier.doi | 10.1088/0305-4470/30/1/012 | |
dc.identifier.endpage | 184 | en_US |
dc.identifier.issn | 0305-4470 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-0031556878 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 173 | en_US |
dc.identifier.uri | https://doi.org/10.1088/0305-4470/30/1/012 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/25759 | |
dc.identifier.volume | 30 | en_US |
dc.identifier.wos | WOS:A1997WG76300012 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Iop Publishing Ltd | en_US |
dc.relation.ispartof | Journal Of Physics A-Mathematical And General | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | Scattering from the potential barrier V=cosh(-2)wx from the path integration over SO(1,2) | en_US |
dc.type | Article | en_US |