On modules and rings in which complements are isomorphic to direct summands
dc.authorid | Taşdemir, Özgür/0000-0003-2500-8255 | |
dc.authorwosid | Taşdemir, Özgür/B-3626-2019 | |
dc.contributor.author | Karabacak, Fatih | |
dc.contributor.author | Kosan, M. Tamer | |
dc.contributor.author | Quynh, T. Cong | |
dc.contributor.author | Tasdemir, Ozgur | |
dc.date.accessioned | 2024-06-12T10:58:03Z | |
dc.date.available | 2024-06-12T10:58:03Z | |
dc.date.issued | 2022 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | A right R-module M is virtually extending (or CIS) if every complement submodule of M is isomorphic to a direct summand of M, and M is called a virtually C2-module if every complement submodule of M which is isomorphic to a direct summand of M is itself a direct summand. The class of virtually extending modules (respectively, virtually C2-modules) is a strict and simultaneous generalization of extending modules (respectively, unifies extending modules and C2-modules): M is a semisimple module if and only if M is virtually semisimple and C2, and M is an extending module if and only if M is virtually extending and virtually C2. Furthermore, every virtually simple right R-module is injective if and only if R is a right V-ring and the class of virtually simple right R-modules coincides with the class of simple right R-modules. Among other results, we show that (1) if all cyclic sub-factors of a cyclic weakly co-Hopfian right R-module M are virtually extending, then M is a finite direct sum of uniform submodules; (2) every distributive virtually extending module over any Noetherian ring is a direct sum of uniform submodules; (3) over a right Noetherian ring, every virtually extending module satisfies the Schroder-Bernstein property; (4) being virtually extending (VC2) is a Morita invariant property; (4) if M circle plus E(M) is a VC2-module where E(-) denotes the injective hull, then M is injective. | en_US |
dc.identifier.doi | 10.1080/00927872.2021.1979026 | |
dc.identifier.endpage | 1168 | en_US |
dc.identifier.issn | 0092-7872 | |
dc.identifier.issn | 1532-4125 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85117469464 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1154 | en_US |
dc.identifier.uri | https://doi.org/10.1080/00927872.2021.1979026 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/19916 | |
dc.identifier.volume | 50 | en_US |
dc.identifier.wos | WOS:000709735700001 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Inc | en_US |
dc.relation.ispartof | Communications In Algebra | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Co-Hopfian Module | en_US |
dc.subject | Osofsky-Smith Theorem | en_US |
dc.subject | Schroder-Bernstein Property | en_US |
dc.subject | Square-Free Module | en_US |
dc.subject | Virtually Extending Module | en_US |
dc.subject | Virtually C2 Module | en_US |
dc.subject | Virtually Semisimple Module | en_US |
dc.subject | Submodules | en_US |
dc.subject | Property | en_US |
dc.title | On modules and rings in which complements are isomorphic to direct summands | en_US |
dc.type | Article | en_US |