Generating binary diffusion layers with maximum/high branch numbers and low search complexity
dc.authorid | Öztürk, Emir/0000-0002-3734-5171 | |
dc.authorid | Akleylek, Sedat/0000-0001-7005-6489 | |
dc.authorid | Tuncay, Gokhan/0000-0002-4293-4018 | |
dc.authorwosid | Tuncay, Gökhan/HZJ-8217-2023 | |
dc.authorwosid | Öztürk, Emir/Z-1726-2018 | |
dc.authorwosid | Akleylek, Sedat/N-2620-2019 | |
dc.contributor.author | Akleylek, Sedat | |
dc.contributor.author | Sakalli, Muharrem Tolga | |
dc.contributor.author | Ozturk, Emir | |
dc.contributor.author | Mesut, Andac Sahin | |
dc.contributor.author | Tuncay, Gokhan | |
dc.date.accessioned | 2024-06-12T10:59:37Z | |
dc.date.available | 2024-06-12T10:59:37Z | |
dc.date.issued | 2016 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | In this paper, we propose a new method to generate n x n binary matrices (for n = k . 2(t) where k and t are positive integers) with a maximum/high of branch numbers and a minimum number of fixed points by using 2(t) x 2(t) Hadamard (almost) maximum distance separable matrices and k x k cyclic binary matrix groups. By using the proposed method, we generate n x n (for n = 6, 8, 12, 16, and 32) binary matrices with a maximum of branch numbers, which are efficient in software implementations. The proposed method is also applicable with m x m circulant matrices to generate n x n (for n = k . m) binary matrices with a maximum/high of branch numbers. For this case, some examples for 16 x 16, 48 x 48, and 64 x 64 binary matrices with branch numbers of 8, 15, and 18, respectively, are presented. Copyright (C) 2016 John Wiley & Sons, Ltd. | en_US |
dc.description.sponsorship | TUBITAK [2219] | en_US |
dc.description.sponsorship | Sedat Akleylek is partially supported by TUBITAK under 2219-Postdoctoral Research Program Grant. The authors would like to express their gratitude to the anonymous reviewers for their invaluable suggestions in putting the present study into its final form. | en_US |
dc.identifier.doi | 10.1002/sec.1561 | |
dc.identifier.endpage | 3569 | en_US |
dc.identifier.issn | 1939-0114 | |
dc.identifier.issn | 1939-0122 | |
dc.identifier.issue | 16 | en_US |
dc.identifier.scopus | 2-s2.0-84978114982 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 3558 | en_US |
dc.identifier.uri | https://doi.org/10.1002/sec.1561 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/20499 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:000389250100041 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley-Hindawi | en_US |
dc.relation.ispartof | Security And Communication Networks | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Diffusion Layer | en_US |
dc.subject | Block Ciphers | en_US |
dc.subject | Branch Number | en_US |
dc.subject | Binary Matrix | en_US |
dc.subject | MDS Matrix | en_US |
dc.subject | Algebraic Construction | en_US |
dc.subject | Linear Transformations | en_US |
dc.subject | Block Cipher | en_US |
dc.subject | Matrix | en_US |
dc.title | Generating binary diffusion layers with maximum/high branch numbers and low search complexity | en_US |
dc.type | Article | en_US |