Load sharing within a human thoracic vertebral body: An in vitro biomechanical study

dc.authoridInceoglu, Serkan/0000-0001-7605-8987
dc.authoridSohn, Moon-Jun/0000-0002-1796-766X
dc.authorwosidInceoglu, Serkan/B-9700-2015
dc.authorwosidKILINÇER, Cumhur/C-7969-2014
dc.authorwosidBakirci, Nadi/AAH-6894-2019
dc.contributor.authorKilincer, Cumhur
dc.contributor.authorInceglu, Serkan
dc.contributor.authorSohn, Moon Jun
dc.contributor.authorFerrara, Lisa A.
dc.contributor.authorBakirci, Nadi
dc.contributor.authorBenzel, Edward C.
dc.date.accessioned2024-06-12T10:54:40Z
dc.date.available2024-06-12T10:54:40Z
dc.date.issued2007
dc.departmentTrakya Üniversitesien_US
dc.description7th International Congress on Spine -- APR, 2005 -- Antalya, TURKEYen_US
dc.description.abstractOBJECTIVE: The vertebral body is the major load bearing part of the vertebra and consists of a central trabecular core surrounded by a thin cortical shell. The aim of this in vitro biomechanical study is to determine the debated issue of load sharing in a vertebral body. METHODS: A series of non-destructive compressive testing on excised human thoracic vertebral bodies were performed. The testing process consisted of a stepwise removal of the vertebrae's trabecular centrum and measurement of surface strains. RESULTS: Load sharing of cortical shell of osteopenic vertebrae (48.1+/-7.6) was significantly higher than that of normal vertebrae (44.3+/-10.6). Load sharing of middle thoracic vertebrae (49.4+/-10.0) was significantly higher than that of lower thoracic vertebrae (42.4+/-8.5). According to general linear model analysis, test speed and load were not found to be effectual on load sharing with the exception that osteopenic vertebrae showed lower cortical load sharing under higher loads. CONCLUSIONS: The cortical shell takes nearly 45% of physiological loads acting upon an isolated thoracic vertebra. Load sharing between cortical shell and trabecular centrum is significantly affected by spinal level and bone mineral density. The load borne by trabecular bone increases towards the lower spinal levels, and decreases by osteoporosis.en_US
dc.identifier.endpage177en_US
dc.identifier.issn1019-5149
dc.identifier.issue3en_US
dc.identifier.pmid17939103en_US
dc.identifier.scopus2-s2.0-41749117341en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage167en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14551/19135
dc.identifier.volume17en_US
dc.identifier.wosWOS:000256792800001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherTurkish Neurosurgical Socen_US
dc.relation.ispartofTurkish Neurosurgeryen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiomechanicsen_US
dc.subjectBoneen_US
dc.subjectOsteoporosisen_US
dc.subjectSpineen_US
dc.subjectTesten_US
dc.subjectThoracic Vertebraeen_US
dc.subjectQuantitative Computed-Tomographyen_US
dc.subjectLumbar Vertebraeen_US
dc.subjectTrabecular Boneen_US
dc.subjectSurface Strainen_US
dc.subjectFracture Risken_US
dc.subjectCompact-Boneen_US
dc.subjectStrengthen_US
dc.subjectOsteoporosisen_US
dc.subjectCompressionen_US
dc.subjectPredictionen_US
dc.titleLoad sharing within a human thoracic vertebral body: An in vitro biomechanical studyen_US
dc.typeConference Objecten_US

Dosyalar