Segmentation of Histopathological Images with Convolutional Neural Networks using Fourier Features

dc.authoridBilgin, Gokhan/0000-0002-5532-477X
dc.authorwosidBilgin, Gokhan/W-2666-2018
dc.contributor.authorHatipolu, Nuh
dc.contributor.authorBilgin, Gokhan
dc.date.accessioned2024-06-12T11:03:20Z
dc.date.available2024-06-12T11:03:20Z
dc.date.issued2015
dc.departmentTrakya Üniversitesien_US
dc.description23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEYen_US
dc.description.abstractThe study aims to boost the success of the segmentation results by evaluating spatial relations in the segmentation of histopathalogical images. In the first step Fourier features are extracted from RGB color space of digital histopathalogical images. Training data sets are formed by selecting equal number of different cellular and extra-cellular structures in spatial domain from the images. Classification models of each training data set is obtained by utilizing Convolutional Neural Network (CNN), Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) methods. Visual and numerical outputs which are obtained from supervised training methods are presented for comparison purpose in the experimental results section.en_US
dc.description.sponsorshipDept Comp Engn & Elect & Elect Engn,Elect & Elect Engn,Bilkent Univen_US
dc.identifier.endpage458en_US
dc.identifier.isbn978-1-4673-7386-9
dc.identifier.issn2165-0608
dc.identifier.startpage455en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14551/21605
dc.identifier.wosWOS:000380500900092en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2015 23rd Signal Processing And Communications Applications Conference (Siu)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHistopathologic Imagesen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectSegmentationen_US
dc.subjectFourier Transformen_US
dc.subjectSpatial Relationsen_US
dc.titleSegmentation of Histopathological Images with Convolutional Neural Networks using Fourier Featuresen_US
dc.typeConference Objecten_US

Dosyalar