Application of clustering algorithm in complex landscape farmland synthetic aperture radar image segmentation

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Walter De Gruyter Gmbh

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In synthetic aperture radar (SAR) image segmentation field, regional algorithms have shown great potential for image segmentation. The SAR images have a multiplicity of complex texture, which are difficult to be divided as a whole. Existing algorithm may cause mixed super-pixels with different labels due to speckle noise. This study presents the technique based on organization evolution (OEA) algorithm to improve ISODATA in pixels. This approach effectively filters out the useless local information and successfully introduces the effective information. To verify the accuracy of OEA-ISO data algorithm, the segmentation effect of this algorithm is tested on SAR image and compared with other techniques. The results demonstrate that the OEA-ISO data algorithm is 10.16% more accurate than the WIPFCM algorithm, 23% more accurate than the K-means algorithm, and 27.14% more accurate than the fuzzy C-means algorithm in the light-colored farmland category. It can be seen that the OEA-ISO data algorithm introduces the pixel block strategy, which successfully reduces the noise interference in the image, and the effect is more obvious when the image background is complex.

Açıklama

Anahtar Kelimeler

Clustering Algorithm, Farmland, SAR Image Segmentation, Regional Algorithms, Noise Interference, Sar

Kaynak

Journal Of Intelligent Systems

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

30

Sayı

1

Künye