Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity

Küçük Resim Yok

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Bv

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In the present study, axial vibration behavior of single-walled carbon nanotube-based mass sensors is studied using nonlocal elasticity theory. The nonlocal constitutive equations of Eringen are used in the formulations. Carbon nanotubes with different lengths, attached mass and boundary conditions are considered in the formulations. The effects of nonlocality, length of the carbon nanotubes and attached mass are investigated in detail for each considered problem. It is shown that the axial vibration behavior of single-walled carbon nanotubes can be used in mass sensors. The dynamic behavior of single-walled carbon nanotubes can be modeled using the nonlocal elasticity models. The mass sensitivity of nanotube-based mass sensors can reach zeptograms. (C) 2011 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Nanomechanical Sensors, Continuum-Mechanics, Shear Deformation, Single, Immobilization, Microscopy, Proteins, Strain, Tubes

Kaynak

Physica E-Low-Dimensional Systems & Nanostructures

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

43

Sayı

6

Künye