On the $$(1+u^2+u^3)$$ -Constacyclic and Cyclic Codes Over the Finite Ring $$ {F}_2+u{F}_2+u^2{F}_2+u^3{F}_2+v{F}_2 $$
dc.authorscopusid | 57207960780 | |
dc.authorscopusid | 55225938200 | |
dc.authorscopusid | 35363583100 | |
dc.contributor.author | Güzel G.G. | |
dc.contributor.author | Dertli A. | |
dc.contributor.author | Çengellenmiş Y. | |
dc.date.accessioned | 2024-06-12T10:24:45Z | |
dc.date.available | 2024-06-12T10:24:45Z | |
dc.date.issued | 2019 | |
dc.description.abstract | In this paper a new finite ring is introduced along with its algebraic properties. In addition, a new Gray map is defined on the ring. The Gray images of both the cyclic and the $$(1+u^{2}+u^{3})$$ -constacyclic codes over the finite ring are found to be permutation equivalent to binary quasicyclic codes. © 2019, Springer Nature Switzerland AG. | en_US |
dc.identifier.doi | 10.1007/978-3-030-12558-5_6 | |
dc.identifier.endpage | 329 | en_US |
dc.identifier.issn | 2522-0969 | |
dc.identifier.scopus | 2-s2.0-85129181850 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 323 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-12558-5_6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/15987 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Birkhauser | en_US |
dc.relation.ispartof | Tutorials, Schools, and Workshops in the Mathematical Sciences | en_US |
dc.relation.publicationcategory | Kitap Bölümü - Uluslararası | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | [Abstarct Not Available] | en_US |
dc.title | On the $$(1+u^2+u^3)$$ -Constacyclic and Cyclic Codes Over the Finite Ring $$ {F}_2+u{F}_2+u^2{F}_2+u^3{F}_2+v{F}_2 $$ | en_US |
dc.type | Book Chapter | en_US |