Bi-Hamiltonian structure of a unit geodesic vector field on a 3D space of constant negative curvature
dc.authorid | Bayrakdar, Tuna/0000-0001-8777-5842 | |
dc.authorwosid | Bayrakdar, Tuna/M-9387-2017 | |
dc.contributor.author | Bayrakdar, T. | |
dc.date.accessioned | 2024-06-12T10:55:58Z | |
dc.date.available | 2024-06-12T10:55:58Z | |
dc.date.issued | 2024 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | In this work we consider the Riemannian manifold defined by the product of an integral curve of a Cauchy-Riemann vector field on the Poincare upper half -plane and its image in the tangent bundle. We show that for a Cauchy-Riemann vector field the Chern-Simons three -form identically vanishes and for the Killing vector field X = x theta x + y theta y the manifold is a space of constant negative curvature. We also show that the components of the connection 1 -form theta define compatible Poisson structures iff theta perpendicular to d theta is so(3)-valued. By virtue of this we obtain a bi-Hamiltonian structure of a unit geodesic vector field on the manifold. (c) 2024 Elsevier B.V. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.geomphys.2024.105115 | |
dc.identifier.issn | 0393-0440 | |
dc.identifier.issn | 1879-1662 | |
dc.identifier.scopus | 2-s2.0-85183492359 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.geomphys.2024.105115 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/19615 | |
dc.identifier.volume | 198 | en_US |
dc.identifier.wos | WOS:001175453100001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Journal Of Geometry And Physics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cauchy-Riemann Vector Field | en_US |
dc.subject | Space Of Constant Negative Curvature | en_US |
dc.subject | Bi-Hamiltonian Structure | en_US |
dc.subject | Unit Geodesic Vector Field | en_US |
dc.subject | Forms | en_US |
dc.title | Bi-Hamiltonian structure of a unit geodesic vector field on a 3D space of constant negative curvature | en_US |
dc.type | Article | en_US |