Binary nanocomposites of reduced graphene oxide and cobalt (II, III) oxide for supercapacitor devices
dc.authorid | Ates, Murat/0000-0002-1806-0330 | |
dc.authorwosid | Ates, Murat/G-3798-2012 | |
dc.contributor.author | Ates, Murat | |
dc.contributor.author | Yoruk, Ozan | |
dc.contributor.author | Bayrak, Yuksel | |
dc.date.accessioned | 2024-06-12T11:15:48Z | |
dc.date.available | 2024-06-12T11:15:48Z | |
dc.date.issued | 2022 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | In this study, a simple and one-step cost-effective preparation of rGO/Co3O4 nanocomposite was given out in different monomer concentrations of [rGO]o/[Co3O4]o= 1:1; 1:2; 1:5 and 1:10. The electroactive materials were characterized by many techniques, such as FTIR-ATR, XPS, TGA-DTA, Raman, BET surface analysis, GCD, SEM-EDX, XRD, TEM, CV, and EIS analysis. A symmetric supercapacitor applying rGO/Co3O4 nanocomposite as positive and negative electrodes was taken in the potential window between 0.0 and 0.8 V as the highest specific capacitance of Csp= 115.35 Fxg-1 at 2 mVxs-1 for [rGO]o/[Co3O4]o= 1:2. Furthermore, the highest energy (E) and power densities (P) were obtained as E= 20.16 Whxkg-1 at 40 mA and P= 26.140 kWxkg-1 at 10 mA for [rGO]o/[Co3O4]o= 1:2 by GCD method, respectively. As a result, rGO/Co3O4 nanocomposite at different monomer concentrations showed an easy synthesis, a sustainable approach, and a high electrochemical performances for energy storage devices. | en_US |
dc.description.sponsorship | project Trakya University, TUBAP [2018-138] | en_US |
dc.description.sponsorship | The part of the work was partially supported by project Trakya University, TUBAP (project no: [2018-138]). | en_US |
dc.identifier.doi | 10.1080/10667857.2021.1926810 | |
dc.identifier.endpage | 1182 | en_US |
dc.identifier.issn | 1066-7857 | |
dc.identifier.issn | 1753-5557 | |
dc.identifier.issue | 9 | en_US |
dc.identifier.scopus | 2-s2.0-85106413973 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1168 | en_US |
dc.identifier.uri | https://doi.org/10.1080/10667857.2021.1926810 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/24082 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:000654075900001 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.ispartof | Materials Technology | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Supercapacitor | en_US |
dc.subject | Co3O4 | en_US |
dc.subject | Energy Density | en_US |
dc.subject | Nanocomposite | en_US |
dc.subject | Reduced Graphene Oxide | en_US |
dc.subject | Enhanced Electrochemical Performance | en_US |
dc.subject | Pot Hydrothermal Synthesis | en_US |
dc.subject | Microwave-Assisted Method | en_US |
dc.subject | Facile Synthesis | en_US |
dc.subject | Asymmetric Supercapacitors | en_US |
dc.subject | Efficient Electrocatalyst | en_US |
dc.subject | Capacitive Behavior | en_US |
dc.subject | Green Synthesis | en_US |
dc.subject | Anode Material | en_US |
dc.subject | Surface-Area | en_US |
dc.title | Binary nanocomposites of reduced graphene oxide and cobalt (II, III) oxide for supercapacitor devices | en_US |
dc.type | Article | en_US |