Diffusion tensor imaging: survival analysis prediction in breast cancer patients

dc.authoridCicin, Berkin Anil/0009-0004-0216-1366
dc.authoridHereklioglu, Savas/0000-0002-5467-046X
dc.authoridURUT, DEVRIM ULAS/0000-0003-4763-8645
dc.authoridTUNCBILEK, NERMIN/0000-0002-8734-1849
dc.contributor.authorUrut, Devrim Ulas
dc.contributor.authorKarabulut, Derya
dc.contributor.authorHereklioglu, Savas
dc.contributor.authorOezdemir, Gulsah
dc.contributor.authorCicin, Berkin Anil
dc.contributor.authorHacioglu, Bekir
dc.contributor.authorSuet, Necet
dc.date.accessioned2024-06-12T10:55:12Z
dc.date.available2024-06-12T10:55:12Z
dc.date.issued2024
dc.departmentTrakya Üniversitesien_US
dc.description.abstractPurpose We aimed to explore the performance of diffusion-tensor imaging (DTI) and apparent diffusion coefficient (ADC) parameters in evaluating disease-free survival (DFS) and overall survival (OS) in patients with invasive breast cancer. Material and methods A total of 49 women with invasive breast cancer who were diagnosed between 2017 and 2022 were included. All patients underwent breast magnetic resonance imaging (MRI) with DTI and diffusion-weighted imaging (DWI) features, with examiners blinded to the clinical data. Volume anisotropy (VA), fractional anisotropy (FA), and ADC values were measured to assess intratumoral measured heterogeneity. Correlations and differences in diffusion metrics according to OS and DFS status of the cases were analyzed. The discriminative ability of the quantitative findings was assessed by receiver operating characteristic (ROC) curve analyses and validated in the independent cohort. Results We evaluated patients with metastases (n = 13, 36.5%) and those without metastases (n = 36, 73.5%). Differences in the ADC, FA, and VA values were observed. The results of Cox regression survival analysis for all the patients included in the survival analysis revealed that DTI metrics contributed to the prediction of overall survival (OS) in the emerging models (p < 0.05). Both FA and VA were associated with OS (p = 0.037 and p = 0.038, respectively). However, ADC was not associated with OS (p = 0.177) or DFS (p = 0.252). Conclusion To the best of our knowledge, this is the first study to assess the prognostic value of DTI-MRI in breast cancer with statistical survival analysis techniques. We believe that DTI measurements can be used as a biomarker for OS analysis in breast cancer given the available data.en_US
dc.identifier.doi10.1007/s00117-023-01254-0
dc.identifier.issn2731-7048
dc.identifier.issn2731-7056
dc.identifier.pmid38277036en_US
dc.identifier.scopus2-s2.0-85183418699en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1007/s00117-023-01254-0
dc.identifier.urihttps://hdl.handle.net/20.500.14551/19332
dc.identifier.wosWOS:001228837800001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofRadiologieen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBreast Canceren_US
dc.subjectDTIen_US
dc.subjectADCen_US
dc.subjectOverall Survivalen_US
dc.subjectMetastasisen_US
dc.subjectPrognosisen_US
dc.subjectDiagnostic Performanceen_US
dc.subjectDifferential-Diagnosisen_US
dc.subjectMrien_US
dc.subjectCoefficienten_US
dc.titleDiffusion tensor imaging: survival analysis prediction in breast cancer patientsen_US
dc.typeArticleen_US

Dosyalar