Comparison of regression tree data mining methods for prediction of mortality in head injury

dc.authoridSimsek, Osman/0000-0002-8716-5187
dc.authorwosidSimsek, Osman/D-4906-2012
dc.contributor.authorSut, Necdet
dc.contributor.authorSimsek, Osman
dc.date.accessioned2024-06-12T10:59:09Z
dc.date.available2024-06-12T10:59:09Z
dc.date.issued2011
dc.departmentTrakya Üniversitesien_US
dc.description.abstractWith this research, we sought to examine the performance of six different regression tree data mining methods to predict mortality in head injury. Using a data set consisting of 1603 head injury cases, we assessed the performance of: the Classification and Regression Trees (CART) method; the Chi-squared Automatic Interaction Detector (CHAID) method; the Exhaustive CHAID (E-CHAID) method; the Quick, Unbiased, Efficient Statistical Tree (QUEST) method; the Random Forest Regression and Classification (RFRC) method; and the Boosted Tree Classifiers and Regression (BTCR) method, in each case based on sensitivity, specificity, positive/negative predictive, and accuracy rates. Next, we compared their areas under the (Receiver Operating Characteristic) ROC curves. Finally, we examined whether they could be grouped in meaningful clusters with hierarchical cluster analysis. Areas under the ROC curves of regression tree data mining methods ranged from 0.801 to 0.954 (p < 0.001 for all). In predicting mortality in head injury under the ROC curve, the BTCR method achieved both the highest area (0.954) and accuracy rate (93.0%), while the CART method achieved both the lowest area (0.801) and accuracy rate (91.1%). All of the regression tree data mining methods were clustered in the same grouping, but the BTCR method was at the origin of the cluster while the CART and QUEST methods produced results that were least like the others. The BTCR, demonstrating a 93.0% accuracy rate and showing statistically significantly differences from the others, may be a helpful tool in medical decision-making for predicting mortality in head injury. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.eswa.2011.06.006
dc.identifier.endpage15539en_US
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-80052024526en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage15534en_US
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2011.06.006
dc.identifier.urihttps://hdl.handle.net/20.500.14551/20340
dc.identifier.volume38en_US
dc.identifier.wosWOS:000295193400123en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Miningen_US
dc.subjectRegression Treeen_US
dc.subjectClassificationen_US
dc.subjectHead Injuryen_US
dc.subjectMortalityen_US
dc.subjectTraumatic Brain-Injuryen_US
dc.subjectClassificationen_US
dc.subjectVariablesen_US
dc.titleComparison of regression tree data mining methods for prediction of mortality in head injuryen_US
dc.typeArticleen_US

Files