A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model

dc.authoridKaramanlı, Armağan/0000-0003-3990-6515
dc.authoridVo, Thuc/0000-0002-7137-4507
dc.authorwosidKaramanlı, Armağan/AGG-2487-2022
dc.authorwosidVo, Thuc P/B-9385-2011
dc.contributor.authorKaramanli, Armagan
dc.contributor.authorAydogdu, Metin
dc.contributor.authorVo, Thuc P.
dc.date.accessioned2024-06-12T11:08:46Z
dc.date.available2024-06-12T11:08:46Z
dc.date.issued2021
dc.departmentTrakya Üniversitesien_US
dc.description.abstractThis paper presents a comprehensive study on bending, vibration and buckling behaviours of the multi-directional FG microplates. The material properties vary continuously both in-plane and through-thickness directions. Based on a quasi-3D shear and normal deformation plate theory and the modified strain gradient theory, a finite element model is proposed and employed to solve the problems of the multi-directional FG microplates with various boundary conditions. The verification is performed by comparing the numerical results with those from the previous studies. A number of numerical examples on the multi-directional FG microplates with nine boundary conditions and power-law index have been carried out. The effects of three material length scale parameters, aspect ratio, gradient indexes in spatial directions and boundary conditions on the displacements, natural frequencies and buckling loads of 1D, 2D and 3D-FG microplates are investigated in details. Some new results, which are not available in open literature, are provided as references for the future studies. (C) 2021 Elsevier Masson SAS. All rights reserved.en_US
dc.description.sponsorshipScientific Research Projects Commission of Bahcesehir University [BAP.2020-1.07]en_US
dc.description.sponsorshipThe first author thanks to Bahcesehir University. This study was funded by Scientific Research Projects Commission of Bahcesehir University. Project number: BAP.2020-1.07.en_US
dc.identifier.doi10.1016/j.ast.2021.106550
dc.identifier.issn1270-9638
dc.identifier.issn1626-3219
dc.identifier.scopus2-s2.0-85100696527en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.ast.2021.106550
dc.identifier.urihttps://hdl.handle.net/20.500.14551/22562
dc.identifier.volume111en_US
dc.identifier.wosWOS:000634691900013en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier France-Editions Scientifiques Medicales Elsevieren_US
dc.relation.ispartofAerospace Science And Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMulti-Directional FG Microplatesen_US
dc.subjectModified Strain Gradient Theoryen_US
dc.subjectBendingen_US
dc.subjectBucklingen_US
dc.subjectVibrationen_US
dc.subjectFEMen_US
dc.subjectHigher-Order Shearen_US
dc.subjectInplane Material Inhomogeneityen_US
dc.subjectIsogeometric Analysisen_US
dc.subjectFree-Vibrationen_US
dc.subjectPlatesen_US
dc.subjectDeformationen_US
dc.subjectBehavioren_US
dc.subjectDesignen_US
dc.subjectOptimizationen_US
dc.subjectNurbsen_US
dc.titleA comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element modelen_US
dc.typeArticleen_US

Dosyalar