Coulomb crystallites from harmonically confined charged bosons in two dimensions

Küçük Resim Yok

Tarih

2008

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Iop Publishing Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

We exploit rotational-symmetry breaking in the one-body density to examine the formation of structures in systems of N strongly coupled charged bosons with logarithmic repulsions inside isotropic two-dimensional harmonic traps, with N in the range from 2 to 7. The results serve as a map for ordered arrangements of vortices in a trapped Bose-Einstein condensate. Two types of N-body wavefunctions are assumed: (i) a permanent vertical bar psi(WM)> of N identical Gaussian orbitals centred at variationally determined sites, and (ii) a permanent vertical bar psi(SM)> of N orthogonal orbitals built from harmonic-oscillator energy eigenstates. With increasing coupling strength, the bosons in the vertical bar psi(WM)> orbitals localize into polygonal-ringlike crystalline patterns ('Wigner molecules'), whereas the wavefunctions vertical bar psi(SM)> describe low energy excited states containing delocalized bosons as in supersolid crystallites ('supermolecules'). For N = 2 at strong coupling both states describe a Wigner dimer.

Açıklama

Anahtar Kelimeler

Bose-Einstein Condensate, High-Tc Superconductors, Quantum Dots, Symmetry-Breaking, Monte-Carlo, Vortices, Superfluid, Molecules, Helium, Liquid

Kaynak

Journal Of Physics-Condensed Matter

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

20

Sayı

33

Künye