An Efficient Inertial Type Iterative Algorithm to Approximate the Solutions of Quasi Variational Inequalities in Real Hilbert Spaces
dc.authorid | Keten Çopur, Ayşegül/0000-0002-7973-946X | |
dc.authorid | Keten Çopur, Ayşegül/0000-0002-7973-946X | |
dc.authorid | GURSOY, Faik/0000-0002-7118-9088 | |
dc.authorid | Hacioglu, Emirhan/0000-0003-0195-1935 | |
dc.authorwosid | Keten Çopur, Ayşegül/AAC-9811-2022 | |
dc.authorwosid | Keten Çopur, Ayşegül/AAC-9778-2022 | |
dc.authorwosid | HACIOĞLU, Emirhan/KGM-0096-2024 | |
dc.contributor.author | Keten Copur, Aysegul | |
dc.contributor.author | Hacioglu, Emirhan | |
dc.contributor.author | Gursoy, Faik | |
dc.contributor.author | Erturk, Muzeyyen | |
dc.date.accessioned | 2024-06-12T11:13:20Z | |
dc.date.available | 2024-06-12T11:13:20Z | |
dc.date.issued | 2021 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | In this article, we design a projection type iterative algorithm with two inertial steps for solving quasi-variational inequalities with Lipschitz continuous and strongly monotone mappings in real Hilbert spaces. We establish different strong convergence results through this algorithm. We give a non-trivial example to validate one of our results and to illustrate the efficiency of the proposed algorithm compared with an already existing one. We also present some numerical experiments to demonstrate the potential applicability and computing performance of our algorithm compared with some other algorithms existing in the literature. The results obtained herein are generalizations and substantial improvements of some earlier results. | en_US |
dc.identifier.doi | 10.1007/s10915-021-01657-y | |
dc.identifier.issn | 0885-7474 | |
dc.identifier.issn | 1573-7691 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85117347786 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s10915-021-01657-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/23492 | |
dc.identifier.volume | 89 | en_US |
dc.identifier.wos | WOS:000707594700002 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer/Plenum Publishers | en_US |
dc.relation.ispartof | Journal Of Scientific Computing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Quasi-Variational Inequalities | en_US |
dc.subject | Inertial Projection-Type Method | en_US |
dc.subject | Strong Monotonicity | en_US |
dc.subject | Lipschitz Continuous | en_US |
dc.subject | Hilbert Spaces | en_US |
dc.subject | Convergence | en_US |
dc.title | An Efficient Inertial Type Iterative Algorithm to Approximate the Solutions of Quasi Variational Inequalities in Real Hilbert Spaces | en_US |
dc.type | Article | en_US |