Constacyclic and Negacyclic Codes over $mathbb{F}_{2}+umathbb{F}_{2}+vmathbb{F}_{2}$ and their Equivalents over $mathbb{F}_{2}$

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this work, we consider the finite ring $mathbb{F}_{2}+umathbb{F}_{2}+vmathbb{F}_{2}$, $u^{2}=1, v^{2}=0$, $ucdot v=vcdot u=0$ which is not Frobenius and chain ring. We studied constacyclic and negacyclic codes in $mathbb{F}_{2}+umathbb{F}_{2}+vmathbb{F}_{2}$ with odd length. These codes are compared with codes that had priorly been obtained on the finite field $mathbb{F}_{2}$. Moreover, we indicate that the Gray image of a constacyclic and negacyclic code over $mathbb{F}_{2}+umathbb{F}_{2}+vmathbb{F}_{2}$ with odd length $n$ is a quasicyclic code of index $4$ with length $4n$ in $mathbb{F}_{2}$. In particular, the Gray images are applied to two different rings $S_{1}=mathbb{F}_{2}+vmathbb{F}_{2}$, $v^{2}=0$ and $S_{2}=mathbb{F}_{2}+umathbb{F}_{2}$, $u^{2}=1$ and negacyclic and constacyclic images of these rings are also discussed.

Açıklama

Anahtar Kelimeler

Kaynak

Fundamental journal of mathematics and applications (Online)

WoS Q Değeri

Scopus Q Değeri

Cilt

5

Sayı

4

Künye