A molecular dynamic study of the effects of high pressure on the structure formation of liquid metallic Ti62Cu38 alloy during rapid solidification

dc.authoridDömekeli, Ünal/0000-0003-1469-2602
dc.authorwosidDömekeli, Ünal/W-4061-2017
dc.contributor.authorDomekeli, Unal
dc.date.accessioned2024-06-12T11:08:24Z
dc.date.available2024-06-12T11:08:24Z
dc.date.issued2021
dc.departmentTrakya Üniversitesien_US
dc.description.abstractIn this study, the effects of high pressure ranging from 0 to 100 GPa on the structural evolution of liquid metallic Ti62Cu38 alloy during rapid cooling have been extensively investigated by using classical molecular dynamics simulation with embedded atom method at a cooling rate of 5 x 10(10) K s(-1). To investigate the first order phase transition during the solidification of the system and to determine the crystallization and glass transition temperatures, the temperature-dependent change in the curves of thermodynamic properties such as average volume per atom, specific heat and enthalpy are examined. Structural properties are expressed by using pair distribution functions, structure factors and atomic configuration. The microstructural atomic order in the system are characterized by using Honeycutt-Andersen pairs and Voronoi tessellation analysis methods. The results provide convincing evidence that the applied pressure during rapid cooling has a strong effect on determining whether the metallic liquid Ti(62)Cu(3)8 will transform into a crystal-like structure or a glassy structure. The critical pressure for the glass formation are predicted to be approximately 10 GPa. While the simulated crystallization and glass transition temperatures increase linear with a slope of 11.11 K GPa(-1) within the range of 0-9 GPa and with a slope of 12.10 K GPa(-1) within the range of 10-100 GPa, respectively. While crystal-like clusters are dominant in the system up to 10 GPa, icosahedral-like clusters representing a short range order at 10 GPa become dominant in the system. The amount of dominant icosahedral-like clusters remains basically stable with pressure increase from 10 to 100 GPa. Also, as the pressure is applied, the calculated bond lengths for all bond pairs decrease.en_US
dc.identifier.doi10.1016/j.commatsci.2020.110089
dc.identifier.issn0927-0256
dc.identifier.issn1879-0801
dc.identifier.scopus2-s2.0-85092403774en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.commatsci.2020.110089
dc.identifier.urihttps://hdl.handle.net/20.500.14551/22412
dc.identifier.volume187en_US
dc.identifier.wosWOS:000600375100001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputational Materials Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMetallic Glassesen_US
dc.subjectHigh Pressureen_US
dc.subjectHoneycutt-Andersen Analysisen_US
dc.subjectVoronoi Tessellationen_US
dc.subjectMolecular Dynamics Simulationsen_US
dc.subjectGlass-Forming Abilityen_US
dc.subjectAtomic-Structureen_US
dc.subjectCluster Evolutionen_US
dc.subjectPhase-Transitionen_US
dc.subjectCooling Rateen_US
dc.subjectCrystallizationen_US
dc.subjectTemperatureen_US
dc.subjectCutien_US
dc.subjectVitrificationen_US
dc.subjectSimulationsen_US
dc.titleA molecular dynamic study of the effects of high pressure on the structure formation of liquid metallic Ti62Cu38 alloy during rapid solidificationen_US
dc.typeArticleen_US

Dosyalar