On the codes over the ring

dc.authorscopusid55225938200
dc.authorscopusid35363583100
dc.contributor.authorDertli A.
dc.contributor.authorCengellenmis Y.
dc.date.accessioned2024-06-12T10:29:12Z
dc.date.available2024-06-12T10:29:12Z
dc.date.issued2012
dc.description.abstractIn this paper, we construct the ring M 2 = F 2 + u 1F 2 + u 2F 2 U 1U 2F 2, where u 2 = 1, u 22 = 1,u 1 u 2 =. Firstly, we investigate the structure of the ring. Then we describe two Gray maps which are shown to be equivalent and it is obtained that C is the Gray image of a linear code over M 2 if and only if C is invariant under the permutation group K 4 = {1,?,ß, ?ß}. Morever we investigate Euclidean self dual codes over M 2.en_US
dc.identifier.endpage187en_US
dc.identifier.issn1598-7264
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84861375556en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage183en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14551/17641
dc.identifier.volume15en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the Jangjeon Mathematical Societyen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGray Map; Lee Weight; Self Dual Code; The Codes Over The Ringen_US
dc.titleOn the codes over the ringen_US
dc.typeConference Objecten_US

Dosyalar