On normal modules

dc.authoridKoc, Suat/0000-0003-1622-786X
dc.contributor.authorJayaram, Chillumuntala
dc.contributor.authorTekir, Unsal
dc.contributor.authorKoc, Suat
dc.contributor.authorCeken, Secil
dc.date.accessioned2024-06-12T10:54:10Z
dc.date.available2024-06-12T10:54:10Z
dc.date.issued2023
dc.departmentTrakya Üniversitesien_US
dc.description.abstractRecall that a commutative ring R is said to be a normal ring if it is reduced and every two distinct minimal prime ideals are comaximal. A finitely generated reduced R-module M is said to be a normal module if every two distinct minimal prime submodules are comaximal. The concepts of normal modules and locally torsion free modules are different, whereas they are equal in theory of commutative rings. We give many properties and examples of normal modules, we use them to characterize locally torsion free modules and Baer modules. Also, we give the topological characterizations of normal modules.en_US
dc.identifier.doi10.1080/00927872.2022.2137519
dc.identifier.endpage1491en_US
dc.identifier.issn0092-7872
dc.identifier.issn1532-4125
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85141063493en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage1479en_US
dc.identifier.urihttps://doi.org/10.1080/00927872.2022.2137519
dc.identifier.urihttps://hdl.handle.net/20.500.14551/18952
dc.identifier.volume51en_US
dc.identifier.wosWOS:000873330300001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications In Algebraen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBaer Modulesen_US
dc.subjectLocally Torsion-Free Modulesen_US
dc.subjectNormal Modulesen_US
dc.subjectQuasi-Regular Modulesen_US
dc.subjectBaeren_US
dc.titleOn normal modulesen_US
dc.typeArticleen_US

Dosyalar