Effects of shear deformation on vibration of doublewalled carbon nanotubes embedded in an elastic medium

Küçük Resim Yok

Tarih

2008

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, free vibration of simply supported multi-walled carbon nanotubes (CNTs) embedded in an elastic medium was investigated by using the generalized shear deformation-beam theory (GSDBT). The effects of surrounding elastic medium, which is considered as a spring, defined by the Winkler model, and van der Waals forces from adjacent nanotubes are taken into account. Third-order shear deformation (TOSD) theory is used to study free vibration of a multi-walled carbon nanotube embedded in an elastic medium. Unlike Timoshenko beam theory, TOSD theory satisfies zero traction boundary conditions on the upper and lower surface of the structures, so there is no need to use a shear correction factor. Free vibration frequencies and amplitude ratios were obtained for various sides to thickness ratios and elastic medium effects and results are compared with previous studies. The results showed that significant difference exist between TOSD and Euler beam theory. It is also interesting to note that, although frequency parameter is increasing by increasing stiffness of embedded medium, amplitude ratios are insensitive to stiffness of embedded elastic medium.

Açıklama

Anahtar Kelimeler

Nano-Structures, Vibration, Multi-Walled Carbon Nanotubes, Third-Order Shear Deformation Theory, Laminated Composite, Wave Propagation

Kaynak

Archive Of Applied Mechanics

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

78

Sayı

9

Künye