A characterization of the codes over Fp

dc.authorscopusid35363583100
dc.contributor.authorCengellenmis Y.
dc.date.accessioned2024-06-12T10:28:33Z
dc.date.available2024-06-12T10:28:33Z
dc.date.issued2010
dc.description.abstractA new Gray map between codes over Fp+uFp+u 2Fp+u3Fp and codes over F p is defined. It is proved that the Gray image of the linear (1 - u3)-cyclic code over the commutative ring Fp + uF p + u2Fp + u3Fp of length n is a distance invariant quasicyclic code of index p2 and the length p3n over Fp. And it is proved that if (n, p) = 1, then every code over Fp which is the Gray image of a linear cyclic code over Fp + uFp + u2Fp + u 3Fp of length n is permutation equivalent to a quasi-cyclic code of index p2.en_US
dc.identifier.endpage137en_US
dc.identifier.issn1229-3067
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-75749091821en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage133en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14551/17288
dc.identifier.volume20en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofAdvanced Studies in Contemporary Mathematics (Kyungshang)en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCyclic Codes; Gray Map; Quasi-Cyclic Codeen_US
dc.titleA characterization of the codes over Fpen_US
dc.typeArticleen_US

Dosyalar