ON THE AXIOMATIC STRUCTURE OF HERTZIAN ELECTRODYNAMICS

dc.authorwosidPolat, Burak/AAZ-5875-2020
dc.contributor.authorPolat, B.
dc.date.accessioned2024-06-12T11:08:09Z
dc.date.available2024-06-12T11:08:09Z
dc.date.issued2012
dc.departmentTrakya Üniversitesien_US
dc.description.abstractThe mathematical foundation, axiomatic structure and principles of Hertzian Electrodynamics for moving bodies are reviewed. The feature of the present investigation is the introduction of a commutative property of the comoving time derivative operator which provides the Hertzian wave equations for material bodies in rotational motion.en_US
dc.identifier.endpage59en_US
dc.identifier.issn2146-1147
dc.identifier.issue1en_US
dc.identifier.startpage35en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14551/22315
dc.identifier.volume2en_US
dc.identifier.wosWOS:000218992700004en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherTurkic World Mathematical Socen_US
dc.relation.ispartofTwms Journal Of Applied And Engineering Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMaxwell Equationsen_US
dc.subjectMoving Mediaen_US
dc.subjectHertz Equationsen_US
dc.subjectContinuum Mechanicsen_US
dc.subjectFrame Indifferenceen_US
dc.subjectProgressive Derivativesen_US
dc.subjectMaxwells Equationsen_US
dc.subjectFormulationen_US
dc.titleON THE AXIOMATIC STRUCTURE OF HERTZIAN ELECTRODYNAMICSen_US
dc.typeArticleen_US

Dosyalar