Exactly solvable position-dependent mass Hamiltonians related to non-compact semi-simple Lie groups

dc.contributor.authorKerimov, G. A.
dc.date.accessioned2024-06-12T11:17:31Z
dc.date.available2024-06-12T11:17:31Z
dc.date.issued2009
dc.departmentTrakya Üniversitesien_US
dc.description.abstractWe suggest a generalized procedure to obtain exactly solvable position-dependent mass Hamiltonians in one dimension. The second-order Casimir invariant of the regular representation of a non-compact semi-simple Lie group G, the spectral properties of which are well known, is used to introduce exactly solvable Hamiltonians. A brief description of the procedure is presented and its application to quantum systems associated with SL(2, R) is detailed.en_US
dc.identifier.doi10.1088/1751-8113/42/44/445210
dc.identifier.issn1751-8113
dc.identifier.issn1751-8121
dc.identifier.issue44en_US
dc.identifier.scopus2-s2.0-70549112136en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1088/1751-8113/42/44/445210
dc.identifier.urihttps://hdl.handle.net/20.500.14551/24743
dc.identifier.volume42en_US
dc.identifier.wosWOS:000270905800017en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIop Publishing Ltden_US
dc.relation.ispartofJournal Of Physics A-Mathematical And Theoreticalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlgebraic Approachen_US
dc.subjectSchrodinger-Equationen_US
dc.subjectElectronsen_US
dc.titleExactly solvable position-dependent mass Hamiltonians related to non-compact semi-simple Lie groupsen_US
dc.typeArticleen_US

Dosyalar