On modules and rings having large absolute direct summands

dc.authoridTaşdemir, Özgür/0000-0003-2500-8255
dc.authorwosidTaşdemir, Özgür/B-3626-2019
dc.contributor.authorDao Thi, Trang
dc.contributor.authorKosan, M. Tamer
dc.contributor.authorTasdemir, Ozgur
dc.contributor.authorQuynh, Truong Cong
dc.date.accessioned2024-06-12T10:54:05Z
dc.date.available2024-06-12T10:54:05Z
dc.date.issued2023
dc.departmentTrakya Üniversitesien_US
dc.description.abstractAn ADS module is a direct sum of mutually injective modules, and an e-ADS module is a direct sum of mutually automorphism-invariant modules. In this paper, we introduce and study large ADS (LADS) modules that form a class of modules larger than ADS modules. An LADS module is a direct sum of mutually essentially injective modules. This result corresponds to the results of ADS and e-ADS modules.Communicated by Toma Albuen_US
dc.description.sponsorshipFunds for Science and Technology Development of the Ministry of Education and Trainingen_US
dc.description.sponsorshipDao Thi Trang was supported by the Funds for Science and Technology Development of the Ministry of Education and Training under the project number B2023-CTT-04.en_US
dc.identifier.doi10.1080/00927872.2023.2223301
dc.identifier.endpage4961en_US
dc.identifier.issn0092-7872
dc.identifier.issn1532-4125
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-85162916629en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage4949en_US
dc.identifier.urihttps://doi.org/10.1080/00927872.2023.2223301
dc.identifier.urihttps://hdl.handle.net/20.500.14551/18901
dc.identifier.volume51en_US
dc.identifier.wosWOS:001011798100001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications In Algebraen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutomorphism-Invariant Moduleen_US
dc.subjectCS Moduleen_US
dc.subjectEssentially Injectiveen_US
dc.subjectFully Invariant Submoduleen_US
dc.subject(Large) ADS Moduleen_US
dc.subject(Large) ADS Ringen_US
dc.subjectAds Modulesen_US
dc.titleOn modules and rings having large absolute direct summandsen_US
dc.typeArticleen_US

Dosyalar